

Journal of Drug Discovery and Therapeutics 1 (5) 2013, 47-54

REVIEW ARTICLE

CORRELATION BETWEEN CHEMINFORMATICS AND BIOINFORMATICS IN DRUG DISCOVERY: A FARSIGHT OF PHARMACY-THE MILLENNIUM OATH

*Vikramkumar Vishnubhai Patel¹, Prof. (Dr.) Dhrubo Jyoti Sen², Prof. Satyanand Tyagi³

¹Research Associate, Veeda Clinical Research[®], Shivalik Plaza-A, Near IIM, Ambawadi, Ahmedabad, Gujarat, India-380015 ²Department of Pharmaceutical Chemistry, Shri Sarvajanik Pharmacy College, Gujarat Technological University, Arvind Baug, Mehsana, Gujarat, India-384001

³President & Founder, Tyagi Pharmacy Association (TPA) & Scientific Writer (Pharmacy), New Delhi, India-110074

ABSTRACT

All drugs are chemicals but all chemicals are not drugs....This statement always focuses towards the footsteps of a new drug discovery by information technology which is concerned with the drug designing which is followed by two info systems: Cheminformatics is the application of software technology to the chemical science in all about its reflection towards the chemistry of a molecule and Bioinformatics is the application of the same software technology in the organizing the biocompatible drug molecules to the macromolecules.

Pharmacy is a subject that is running on it's two feet: chemistry and biology. The footsteps of the both are lying side by side. Lack of one of these two subjects the balance will be disrupted. Chemistry of a drug molecule is superimposed by the biological activity of the same. Recent technology is flourishing day by day according to the progress of basic pharmaceutical science to combat with diseases caused by microorganisms and anomalies in the normal feedback system in living beings. Advanced technology is spreading rapidly to manufacture the new molecules, which could be helpful for diagnosis, treatment and cure of diseases to accept the challenge for making milestone for the new millennium. It is a playground for a chemist and a biologist to play a game with the newer technology.

KEYWORDS: Bioinformatics, Cheminformatics, Drug, Receptor, QSAR, Nanotechnology, Docking, HTS, in-silico

INTRODUCTION:

chemical network, having capacity to fit on the 3D- points.¹⁻⁴ bioreceptor platform or has controlling capacity to inhibit

the malfunction of biochemical and physicochemical The Drug is a chemical substance either obtained behavior in-vivo. According to these phenomena, the from synthetic or natural source having definite 3D- particular substance to be a drug should follow all these

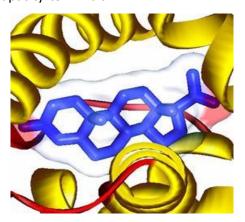


Figure 1: Drug and Receptor

a definite crystal structure having compact matrix design, as repository form for prolongation of its biological having polarity, having specific bond length, having bond response. The entire structural network is also helpful to energy, having hydrophobicity/hydrophilicity to occupy the design the drug polymer matrix due to the formation of site on the macromolecular bed of receptor to show its polymer pockets to load the drug molecules.⁵⁻⁸ biological response. Every drug has some active functional

A specific drug entity either inorganic or organic moiety has group to which the derivatization is possible for making it

Figure-2: Design of Drug Process

The Medicine is a formulated device of drug in which active wholesale or retail shops after dispatch from pharmaceutical ingredient (API) is embedded with pharmaceutical company. excipients to form various dosage forms marketed in

Figure 3: Medicine in Formulation

Pharmaceutical globalization is a hot topic in the recent scattered in various directions according to the need of edition of technology transfer. Pharmacy and science meet modern healthcare system. at the interface to form pharmaceutical science, which is



Figure 4: Technology Transfer

Transfer of newer technology from the pages of book to technology of pharmaceutical science reflects on drug the global corners and the implementation of newer discovery. 9-11 concept of molecular design in the interface of science and

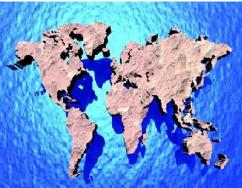


Figure 5: Pharmaceutical Globalization Vol.1 Issue 5. May-2013

Numerous kinds of technology in pharmacy are being present in the flora and fauna are the gold coin to climb on implemented in the umbrella of bioscience for necessary a ladder of great hope for coming future. In the modern medication to the patient compliances. The basic pharmacy market of pharmaceuticals, most of the drugs, which are originates from the grass root of level of natural products being incorporated, are designed according to the mother known as Veshaja, which was an excellent tool to cure the component present in the natural source. 12-14 patients from various diseases. The active constituents

Figure 6: Natural Drugs

Design of new drug molecule is motivated and highlighted the main constituents through molecular modeling, and found in plenty in holistic medicines. Structural design of the newer horizon of pharmaceutical science. 15-17 new molecules is possible according to the active mass of

from the structural variation, molecular tailoring of the rational drug design and finally by QSAR studies. Newer mother component. Alkaloids, steroids, glycosides, tannins, concepts like nanotechnology and combinatorial science carbohydrates, flavones, amino acids, iridoids, etc are either (chemistry or biology) is vividly used now a day in

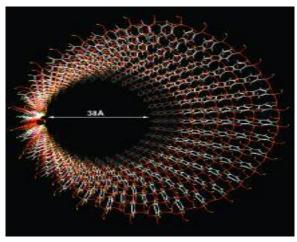


Figure 7: Nanotechnology

Nanotechnology is an amalgamation of science and polymer science to ensure the novel drug delivery system technology that has affected the measurement in the intransdermal delivery as well as in nano world to make a lowest units (nanometer-billionth of a meter). Dendrimers, solid matrix of integration of so many nanoparticles to Nanowires, Carbon Nanotubes, Quantum Dots are now form a fullerene structure. Calixarenes, Rotaxanes, used in the field of nanotechnology giving high efficiency Liposome technology all are used to make a solid matrix of and profitability. Nanotechnology is a valuable contribution polymer to hold the nanotubes loaded with drug particles of the profound research by scientists and engineers to to make a sustained release or controlled release create systems with novel Supramolecular chemistry is also being implemented in response. 18,19

functionalities. formulation by using the latest technology to get the better

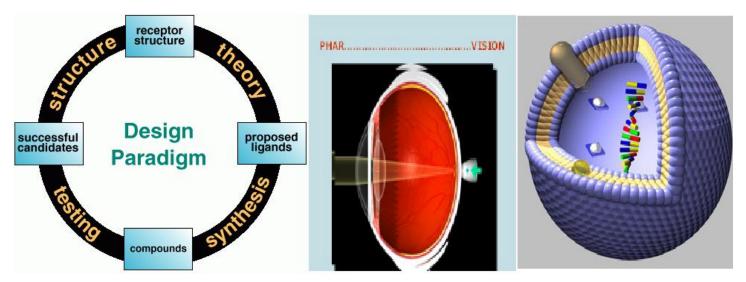


Figure 8: Far sight of pharmacy in latest technology

CHEMINFORMATICS INCLUDE:

Chemical Informatics Chemo-Informatics & Chemi-Informatics Chemo metrics **Data Mining Data Designing** Structure Activity Relationship

BIOINFORMATICS INCLUDE:

Scientific Computing Genome Sequence Structure Prediction Protein Sequence Molecular Simulation

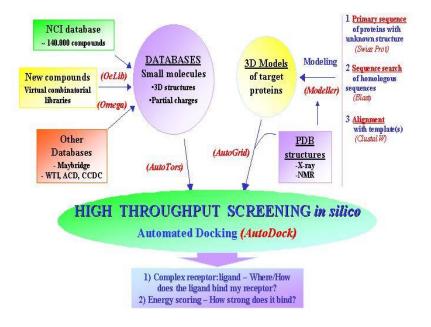


Figure 9: HTS by AutoDock

RANBAXY are now deploying a WOCKHARDT AND SUN PHARMA. AND cheminformatics for lead screening of promising drug One of the major application of this relation is drugmolecules of greater importance at earlier stages, as well receptor binding site or (target discovery). Here in the as for the optimization of new chemical entities (NCE).²⁰

Indian pharmaceutical and biotech majors like DR REDDY'S Till now, cheminformatics and bioinformatics combine LABORATORIES, WOCKHARDT, SUN PHARMA, NICHOLAS used by ORCHID, RANBAXY, ALEMBIC, GLEN MARK,

> example it is illustrated that exact molecule of the drug bind (fit) at the bioreceptor site and shows activity.²¹

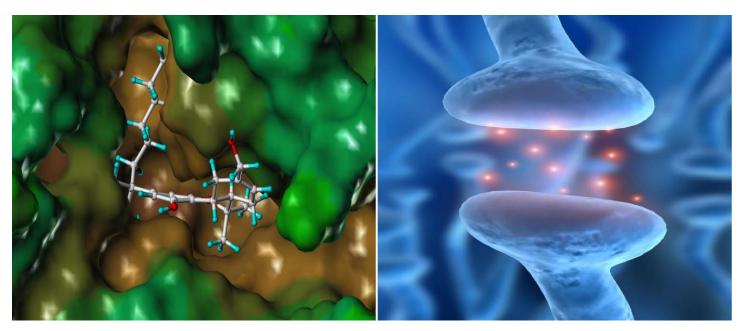


Figure 10: Receptor binding site for the drug

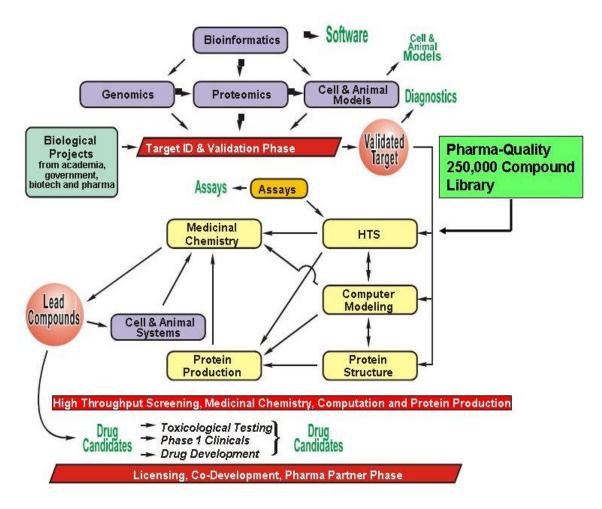
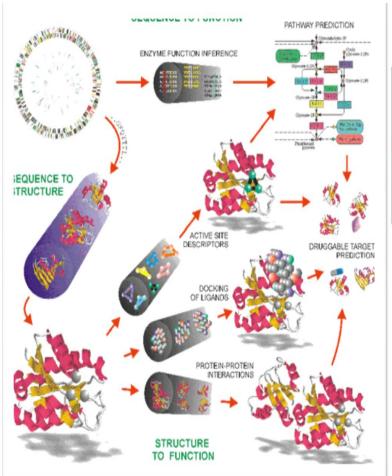
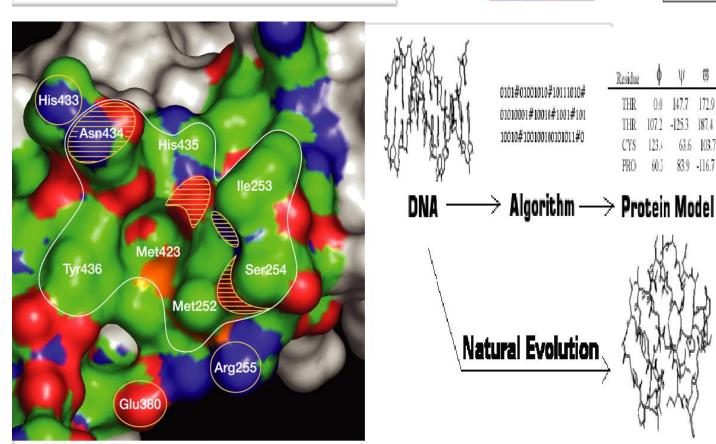
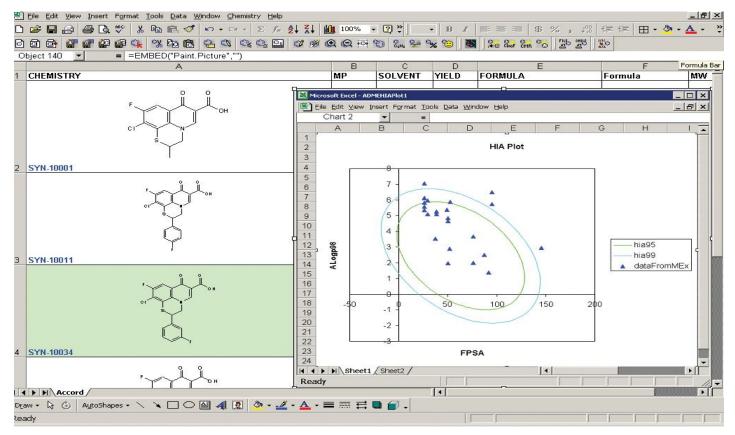



Figure 11: Bioinformatics flowchart

Protein-protein interactions can be quantitatively bioinformatics and the exact molecule for the repair analyzed for structural variations resulted from site- of that deformation can be studied by the use of directed mutagenesis can be studied by cheminformatics. 22,23

STRUCTURE BASED DRUG DESIGN Hydrophobic residue. Hydrophobic Pocket Design drug to fit pocket




Figure 12: Protein binding targets Vol.1 Issue 5. May-2013

Haliskad Lovic (#

147.7 172.9

-1253 187.4

63.6 103.7 83.9 -116.7

Figure 13: Docking

BIOINFORMATICS SOFTWARES:

MOLECULAR DYNAMICS SOFTWARES:

Desmond (software), Folding@home, GROMACS, Vcharge GROMOS, LAMMPS, MacroModel, MDynaMix, Molecular design software, Molecular Modelling Toolkit, NAMD, CONCLUSION: Tinker (software), Tremolo-X, X-PLOR, XMD, Yasara

MOLECULAR MODELING SOFTWARES:

Avizo (software), (software), BALLBOSS (molecular mechanics), Chemical quantitatively analyzed for structural variations resulted WorkBench, Cn3D, List of computer-assisted organic from site-directed mutagenesis and by use of this synthesis software, Cone algorithm, CoNTub, Coot information one can find the exact molecule (Lead (program), Cresset Biomolecular Discovery, CS-ROSETTA, Identification), which can fit on the biological receptor CYANA (Software), DOCK, EMovie, ESyPred3D, ICM- platform assumed by the use of bioinformatics, and elicit LigandScout, LIGPLOT, Molekel, NOCH, NUPACK, PyMOL, The chemistry in the feedback system plays a good role in Schrödinger (company), Scigress, Simbiosys, Spartan (software), Swiss-model, UCSF Chimera, are the Yasara, QuteMol

CHEMINFRMATICS SOFTWARES:

ChemFinder Pro, ChemFileBrowser, ChemProtect, ChemTK Lite, ChemTK, Chiron, emolecules, molecular genomics.

CIARA, CLiDE, Concord, CORINA, DARC, DayMenus, DTREG, Equbits Insight, JChem, LHASA, MACCS-II, Marvin Applets and Marvin Beans 3.0, Merlin, METEOR, Project Library, Abalone (molecular mechanics), AMBER, Ascalaph REACCS, RS³ Discovery, SciMetrics, SECS, SMILES Toolkit A, Designer, Avizo (software), CHARMM, D. E. Shaw Research, SMOG, SYBYL/3DB UNITY, SYNLIB, Thor, TRIAD. UVSS.

Many QSAR/QSPR analyses involve the interactions of a family of molecules with an enzyme or receptor binding site to show the potent molecule. QSAR can also be Abalone (molecular mechanics), AccelrysAscalaph used to study the interactions between the structural Avogadro domains of proteins. Protein-protein interactions can be Jmol, Khimera, Kintech Lab, Lead Finder, their action by controlling biochemical malfunction in-vivo. ShelXle, the correlation between the two info systems as these two combination projection if Biochemistry: Bioinformatics-Cheminformatics. There are other things which relate the Cheminformatics and Bioinformatics in the biochemical reactions happen at molecular levels may AutoNom, CAMEO, The Catalyst, ChemExper, results into metabolites cause abnormalities or improper Chemkey, functioning of organ and which is under the domain of

ACKNOWLEDGEMENT:

The author (Vikramkumar Vishnubhai Patel) is very much thankful to the project guide Prof. Dr. Dhrubo Jyoti Sen for allowing him to present his project in oral session of National Level UG Student Seminar: Pharma Shine 2008; Sponsored by: Gujarat Council on Science and 12. Sakkiah S, Thangapandian S, John S and Lee KW; Technology, Gandhinagar at C.U. Shah College of Pharmacy & Research, Surendranagar, Gujarat, 28 September 2008. He has bagged first prize in podium.

REFERENCES:

- 1. Koehn FE and Carter GT; The evolving role of natural 4(3), 206–20, 2005.
- 2. Acharya C, Coop A, Polli JE and Alexander DM; Recent Advances in Ligand-Based Drug Design: Relevance and Utility Conformationally of the Pharmacophore Approach, Curr. Comput. Aided Drug Des.: 1; 7(1), 10-22, 2011.
- 3. Ghose AK, Viswanadhan VN and Wendoloski JJ; A Knowledge Based Approach in Designing Combinatorial 16. Boyd DB; How computational chemistry became or Medicinal Chemistry Libraries for Drug Discovery: J. Combin. Chem.: 1, 55-68, 1999.
- 4. Clarke FH; How Modern Medicines are discovered. 17. Rutenber EE and Stroud, RM; Binding of the anticancer *Future Publishing Company:* <u>1</u>, 133–157, 1973.
- 5. Sneader W; Drug Prototypes and Their Exploitation. John Wiley & Sons: 1, 564-580, 1996.
- 6. Bohm HJ, Flohr A and Stahl M; Scaffold hopping, Drug Discovery Today: Technologies Lead optimization: 1(3), 217-224, 2004.
- scaffold-hopping approaches, Drug Discovery Today: 17(7/8), 310-324, 2012.
- potential of pharmacophores, Drug Discovery Today: *Technologies*: <u>7(4)</u>, e263–e269, 2010.
- discovery of sulfated small molecules as mimetics of glycosaminoglycans, Bioorganic & Medicinal Chemistry Letters: 23(1), 355-359, 2013.
- 10. Massarellia I, Macch M, Minutolo F, Prota G and 22. Moroy G, Martiny VY, et al.; Toward in-silico structure-Bianucci AM; QSAR models for predicting enzymatic hydrolysis of new chemical entities in 'soft-drug' 3556, 2009.

- 11. Taha MO, Tarairah M, Zalloum H and Abu-Sheikha G; Pharmacophore and QSAR modeling of estrogen receptor β ligands and subsequent validation and in silico search for new hits, Journal of MolecularGraphics and Modeling: 28, 383-40, 2010.
- Pharmacophore based virtual screening, molecular docking studies to design potent heat shock protein 90 inhibitors, European Journal of Medicinal Chemistry: 46, 2937-2947, 2011.
- 13. Kalyaanamoorthy S and Chen YP; Structure-based drug design to augment hit discovery, Drug Discovery Today: 16(17/18), 831-839, 2011.
- products in drug discovery. Nat. Rev. Drug Discov.: 14. Zsoldos Z, Szabo I, Szabo Z and Johnson AP; Software tools for structure based rational drug design, Journal of Molecular Structure (Theochem): 666-667(1), 659-665, 2003.
 - Sampled 15. Wlodawer A and Vondrasek J; Inhibitors of HIV-1 protease: a major success of structure-assisted drug design, Annu. Rev. Biophys. Biomol. Struct.: 27, 249-284, 1998.
 - important in the pharmaceutical industry., In Reviews in Computational Chemistry, 23 Wiley: 401-443, 2007.
 - drug ZD1694 to E.coli thymidylate synthase: assessing specificity and affinity, Structure: 4, 1317–1324, 1996.
 - 18. Reddy AS, Pati SP, Kumar PP, Pradeep HN and Sastry GN; Virtual Screening in Drug Discovery - A Computational Perspective, Current Protein and Peptide Science: 8, 329-351, 2007.
- 7. Sun H, Tawa G and Wallqvist A; Classification of 19. Taylor RD, Jewsbury PJ and Essex JW; A review of protein-small molecule docking methods, Journal of Computer-Aided Molecular Design: 16, 151–166, 2002.
- 8. Hessler Gand Baringhaus KH; The scaffold hopping 20. Bhattacharjee N and Biswas P; Statistical analysis and molecular dynamics simulations of ambivalent αhelices, BMC Bioinformatics: 11, 519, 2010.
- 9. Sidhu PS, et al.; On scaffold hopping: Challenges in the 21. Dodson GG, Lane DP and Verma CS; Molecular simulations of protein dynamics: new windows on mechanisms in biology, EMBO reports: 9(2), 144-150, 2008.
 - based ADMET prediction in drug discovery, Drug Discovery Today: 17(1/2), 44-55, 2012.
 - design, Bioorganic & Medicinal Chemistry: 17, 3543- 23. Colquitt RB, et al; In-silico modeling of physiologic systems, Best Practice & Research Clinical Anesthesiology: 25, 499-510, 2011.