

Journal of Drug Discovery and Therapeutics 1 (5) 2013, 54-57

RESEARCH ARTICLE

FORMULATION AND EVALUATION OF HERBAL EFFERVESCENT GRANULES INCORPORATED WITH MARTYNIA ANNUA EXTRACT

*Prakash Pandey¹, Prabhakar Sharma¹, Ramchandra Gupta¹, Ashish Garg², Ajay Shukla³, Nitin Nema⁴, Anil Pasi⁵ ¹Department of Pharmacognosy, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, M.P., India-482001 ²Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, M.P., India-482001 ³Department of Pharmachemistry, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, M.P., India-482001 4 Department of pharmaceutics, Sagar Institute of Research and Technology, Bhopal, M.P., India-462041 5 Department of pharmacology, College of Pharmacy, IPS Academy, Indore, M.P., India-452001

ABSTRACT

The present research work is based on the formulation of herbal effervescent granules by incorporating the crude petroleum ether extract of martynia annua. The folklore of India widely uses this plant for treatment of various diseases and disorder. The dried leaves powder of the plant was extracted and subjected to preliminary chemical tests. Then it was formulated into efferevescent granules and then evaluated for various parameters like angle of repose, dissolution studies, and effervescent cessation time. The preliminary chemical studies show that the extract contains flavonoids, carbohydrate, alkaloids and glycoside. The formulated effervescent granules exhibited excellent flow properties which showed good angle of repose, carr's index, Hausner's ratio, bulk density and Tapped density.

KEY WORDS: Martynia Annua, Effervescent Granules, Carr's Index, Hausner's Ratio,

INTRODUCTION:

traditional medicine or accumulation of the knowledge, skills, and practices based ingredients, which actually produce the effervescence: India [11].

sodium bicarbonate, citric acid and tartaric acid. When According to the World Health Organization added to water the acids and base react to liberate carbon herbal medicine is the dioxide, resulting in effervescence [6].

Martynia annua, commonly known as the cat's on the theories, beliefs, and indigenized by different claw, and is endemic to Mexico. It is a popular material for cultures, to maintain health. Nature always stands as a basket making among Native American tribes in the golden mark to exemplify the outstanding phenomena of Southwest. The genus and species were first validly symbiosis. Natural products from plant, animal and described by Carl Linnaeus in his 1753 publication Species minerals have been the basis of the treatment of human *Plantarum*. An herbaceous erect, branched, glandular hairy disease [1-3]. Effervescent powders used as saline annual. Leaves opposite, broadly ovate to deltoid, base cathartics were available in the eighteenth century and cordate, apex acute, margins repand-dentate. Flowers were subsequently listed in the official compendia as large, foxglove shaped, pink and dark-purple blotched with compound effervescent powders. Effervescent mixtures yellow inside, borne in 10-20 flowered racemes. Fruits are have been moderately popular over the years since along hard, woody with 2-sharp recurved hooks and seeds with the medicinal value of the particular preparation, they oblong. The leaves contain chlorogenic acid, flavonoids, offered the public a unique dosage form that was seeds- 10.35% of pale yellow semidrying oil and fatty acids interesting to prepare. In addition, they provided a (palmitic acid, stearic acid, oleic acid and arachidic acid). pleasant taste due to carbonation which helped to mask. The leaves are eaten in times of scarcity. They are repeated the objectionable taste of the drugs [4-5]. The choice of in epilepsy and applied to tuberculosis gland of the neck. ingredients for effervescent granules depends both upon The juice is used as gargle for soar throat. The fruit is the requirement of the manufacturing process. The considered alexiteric and useful in inflammation, scabies, required ingredients are at least one acid and at least one painful urination. [7-8]. The plant has medicinal values. In base. The base must release carbon dioxide upon reaction tribal pockets of Chhindwara and Betul Districts, Madhya with the acid. these are usually prepared from a Pradesh, root decoction is administered for snakebite [9]. combination of citric and tartaric acid rather than from a In Marudhamalai hills, tribes use the juice of leaf for single acid because the use of either acid alone causes epilepsy, tuberculosis and sorethroat [10]. Besides these, difficulties. Effervescent salts include the following the stem of the plant is used by Tantriks in some parts of

Figure 1: Martynia annua

MATERIAL AND METHODS:-

active chemical constituents.

FORMULATION OF HERBAL EFFERVESCENT GRANULES:

granulation method. The martynia annua leaves extract 4-5].

(active ingredient) 7.50 mg, polyvinyl pyrrolidone (PVP) Plant collection and extraction: - Plant was binder 24.00 mg, Talc powder 7.50 mg, magnesium collected from the GRKIST (Pharmacy) college campus of esterase 3.75 mg, saccharin 73.50 mg, polyethylene glycols Jabalpur district and identified by local tribes. The 500g of (PEG) 12.00 mg, citric acid 79.33 mg, tartaric acid 158.66 powered plant material was extracted with pet. Ether for mg and sodium bicarbonate 269.71 mg. The extract was 72 h at 45°C. The extract thus obtained was then dried in oven at 60oC to constant weight and triturated in a concentrated under vacuum using rotary vacuum mortar and pestle to make powder then mixed with evaporator and then subjected to preliminary chemical calculated amount of the other components. The binder screening and thin layer chromatography to identify the was added and formed into a paste and granulated using meshes 40. Then sufficient alcohol was added to make a damp mass. This mass was passed through sieve no 20 to get granules and these granules were dried in hot air oven Herbal effervescent granules were prepared by wet at 40°C and then they were packed in air tight container [2,

Figure 2: Herbal Effervescent Granules

EVALUATION OF FORMULATED HERBAL EFFERVESCENT touches the tip of the funnel. The radius of the base of the **GRANULES** [14-17]:

ANGLE OF REPOSE:

flat horizontal surface. The blend was carefully pored suggest a poorly through the funnel until the apex of the conical pile just

conical pile was measured. The angle of repose

 (θ) was calculated using the following formula:

Tan $\theta = h/r$,

The fixed funnel method was employed to measure Where, θ = Angle of repose, h = Height of the cone, r = the angle of repose. A funnel was secured with its tip at a Radius of the cone base. Values for angle of repose ≤ 30° given height (h), above a graph paper that is placed on a usually indicate a free flowing material and angles $\geq 40^{\circ}$

35 show good flow properties, 36-40 show fair flow properties and 41-45 showing passable flow interactions, and a greater difference between properties.

BULK DENSITY:

15 g powder blend introduced into a dry 100 ml Compressibility index = $[(\rho tap - \rho b) / \rho tap] / \times 100$ cylinder, without compacting. The powder was carefully leveled without compacting and the unsettled Hausner's Ratio apparent volume, Vo, was read. The bulk density was calculated using the following formula.

$\rho b = M / Vo$

V = Apparent volume of powder

TAPPED DENSITY:

After carrying out the procedure as given in the Effervescent Cessation Time additional taps of 750 times

until difference between succeeding measurement is less was observed. than 2% and then tapped volume, Vf was measured, to the nearest graduated unit. The tapped density was calculated, RESULTS AND DISCUSSION: in gm per ml, using the following formula.

$\rho tap = M / Vf$

Tapped volume of powder

Carr's Index (%)

interactions. In a free flowing powder, such interactions table no. 1. are generally less significant, and the bulk and tapped

flowing material, 25-30 show excellent flow properties, 31- densities will be closer in value. For poorer flowing materials, there are frequently greater inter-particle

the bulk and tapped densities will be observed. These differences are reflected in the Carr's Index which is calculated using the following formulas:

Where, pb = Bulk Density, ptap = Tapped Density

Hausner's ratio is an indirect index of ease of powder flow. It is calculated by the following formula.

Hausner's Ratio=Tapped density (ρt) / Bulk density(ρb)

Where, pb = Apparent bulk density, M = Weight of sample, Where pt tapped density and pb is bulk density. Lower Hausner's ratio (<1.25) indicates better flow properties than higher ones, between 1.25 to 1.5 showing moderate flow properties and more than 1.5 poor flow.

measurement of bulk density the cylinder containing the 100ml of distill water was taken in 250ml beaker, one dose sample was tapped 500 times initially followed by an of effervescent granules were poured in to the beaker, effervescent cessation time and effervescent production

The pet. ether extract of *M. annua* after extraction gave % yield of 18.5%w/w. When subjected to preliminary Where, ptap = Tapped density, M = Weight of sample, Vf = chemical screening showed the presence of flavonoids, glycoside and tannins. The colour of the granules was light green with characteristic odor. The angle of repose of The Compressibility index (Carr's index) is a measure of the granules was 33.02, Bulk density (pb), and tapped density propensity of a powder to be compressed. It is determined (ptap) was 0.55 and 0.71 respectively. The Compressibility from the bulk and tapped densities. In theory, the less index (Carr's index) was 22 and hausner ratio was 1.29 compressible a material the more flowable it is. As such, it which shows its moderate flow property. The effervescent is measures of the relative importance of interparticulate cessation time was 2-3 min and all results are tabulated in

Table 1: Physical Evaluation of Granules

Sr. No.	Parameter	Result
1.	Angle of Repose	33.02
2.	Bulk density	0.55
3.	Tapped density	0.71
4.	Carr's index	22
5.	Hausner ratio	1.29
6.	Effervescent Cessation Time	2-3 min.
7.	Color	Olive green color
8.	Odor	Characteristic odor
9.	Apperance	Amorphous Granules

CONCLUSION:

formulated from the pet. Ether leaves extract of m. annua The extract of martynia annua was found to and optimized using different granules additives for contain glycoside, alkaloids and carbohydrate which are convenient oral administration granules. The formulated the active ingredients drug. Effervescent granules were granules were subjected to the known official monographs

Prakash Pandey et al. / Journal of Drug Discovery and Therapeutics 1 (5) 2013, 54-57

standards of the BP and IP. These granules which were prepared from local plant that grows wild in India and other parts of world can be used as an effervescent drug 9. Traditional knowledge on ethno-medicinal uses with low price and short disintegration time.

REFERENCE:

- 1. World health organization (2000). General guidelines for methodologies on research and evaluation of traditional medicine who/edm/trm/2000.1). Geneva.
- 2. khalifa K.l et al, design, formulation, and evaluation of senna effervescent tablets, journal of forest products & 13. Shastri BN, (1962). The Wealth of India, Vol (5). New industries, 2012, 1(2), 21-25
- **3.** Verma S. et al, veterinary world, 2008, 1,11, 347-350
- **4.** H.A lieberman, L. Lachman, J.B Schwartz, pharmaceutical dosage forms: tablets, vol.1 and 2, 15. C.K Kokate, Practical Pharmacognosy, 4th ed, Nirali Marcel Dekker inc. New York, 1993, 285.
- 5. H.C Ansel, N.G Popovich, L.V Allen, pharmaceutical 16. W. James, Pharmaceutical preformulation: the dosage forms and drug delivery systems, B.I. Waverly, New Delhi, 1999, 6, 469-471.
- 6. http://www.pharmainfo.net/reviews/review-patentseffervescent-granules
- 7. Bretting, Peter Konrad. 1981. A systematic and ethnobotanical survey of Proboscidea and allied genera of the Martyniaceae. Indiana University, Department of Biology. Dissertation.

- requirements and were found to comply with the 8. Hevly, Richard H. 1969. Nomenclatural history and typification Martynia and Proboscidea of (Martyniaceae). Taxon, 18(5): 527-534.
 - prevailing in tribal pockets of Chhindwara and Betul Districts, Madhya Pradesh, India - Nath Vijendra and Khatri Pavan Kumar
 - 10. Some Medicinal plants used by Irular, the tribal people of Marudhamalai hills, Coimbatore, Tamil Nadu -M.Senthilkumar, P.Gurumoorthi, and K.Janardhanan
 - (document 11. http://en.wikipedia.org/wiki/Martynia
 - 12. Irvine. FR., (1961). Woody Plants of Ghana. London, Oxford University Press.
 - Delhi, Council of Scientific And Industrial Research.
 - 14. K.R Khandelwal, Practical Pharmacognosy,19th ed: Nirali Prakashan, Pune 2009,146-165.
 - Prakashan, Pune, India. 2008, 10-27
 - physicochemical properties of drug substances: Aulton ME. Pharmaceutics the science of dosage form design, Churchill living stone, Spain, 2006, 2, 113-138.
 - 17. G.S Banker, N.R Anderson, Tablets: Lachman L, Lieberman H, The theory and practice of Industrial Pharmacy, CBS publishers, New Delhi, 2009, 293-345.