

Journal of Drug Discovery and Therapeutics 1 (5) 2013, 42-47

RESEARCH ARTICLE

FORMULATION AND EVALUATION OF RIFAMPICIN SOLID LIPID NANOPARTICLES

*Mangukia Dhruv¹, Mangukia Ishita², Patel Chirag J³, Prof. Satyanand Tyagi⁴, Mohammed Rageeb Mohammed Usman⁵, Anil Kumar Gupta⁶ ¹Department of Pharmaceutics, Maharishi Arvind Institute of Pharmacy, Mansarovar, Jaipur, Rajasthan, India-302020. ²Department of Pharmaceutics, Parul Institute of Pharmacy, Vadodara, Gujarat, India-391760. ³Editor-in-Chief, Tyagi Pharmacy Association (TPA) & Scientific Writer (Pharmacy), Chattarpur, New Delhi, India-110074. ⁴President & Founder, Tyagi Pharmacy Association (TPA) & Scientific Writer (Pharmacy), Chattarpur, New Delhi, India-110074. ⁵Associate Editor, Tyagi Pharmacy Association (TPA) & Assistant Professor, Department of Pharmcognosy, Smt. S. S. Patil College of Pharmacy, Chopda, Maharashtra, India-425107.

⁶Jyoti Vidyapeeth women's University, Jaipur, discipline of Pharmaceutical Science, Jaipur, Rajasthan, India-303007.

ABSTRACT

The solid lipid nanoparticles (SLNs) are sub-micron sized colloidal carriers composed of physiological lipid dispersed either in water or in an aqueous surfactant solution. SLNs as colloidal drug carrier combine the advantages of polymeric nanoparticles, fat emulsions and liposomes. Rifampicin is bactericidal to M.tuberculosis and many other gram positive and negative bacteria. The solid lipid nanoparticles of rifampicin were prepared by 'emulsion solvent diffusion method'. PVA (cold aqueous soluble) was used as shell material, Stearic acid as lipid core and Methanol and Chloroform as organic solvents. Processing parameters were optimized to achieve maximum yield and high quality of solid lipid nanoparticles of Rifampicin.

KEYWORDS: Solid lipid nanoparticles, SLN, Rifampicin.

INTRODUCTION:

Solid lipid nanoparticles have gained much make the patient comfortable with the therapy. attraction in delivery of drugs with poor water solubility. SLN has combined advantages of fat emulsions, polymeric MATERIALS AND METHOD: nanoparticles and liposomes. SLN is a colloidal carrier system wherein drug is entrapped in a biocompatible lipid MATERIALS: core and surfactant at the outer shell. SLN thus offers desired drug release and avoidance of organic solvents.

Rifampicin is a semi synthetic derivative of rifamycin B obtained from Streptomyces mediterranei. PREPARATION OF RIFAMPICIN SLN: Rifampicin is bactericidal to M.tuberculosis and many other gram positive and negative bacteria. It is as efficacious as prepared by 'emulsion solvent diffusion method'. Here, INH and better than all other drugs against tuberculosis. lipid was dissolved in the organic phase in water bath at Though the bactericidal action covers all subpopulations of 50°C. Stearic acid and rifampicin were accurately weighed TB bacilli, it acts best on slowly or intermittently dividing to the required amount and dissolved completely in a bacilli as well as on many atypical mycobacteriea. Both mixture of chloroform and methanol in a water bath at extracellular and intracellular organisms are affected. It has 50°C. The resulting organic solution was poured into poly good sterilizing and resistance preventing actions. vinyl alcohol at 4-8°C. The mixture was then homogenized Rifamycin inhibits DNA dependent RNA synthesis. Probably for 15 minutes. Then the organic solvents were removed the basis of selective toxicity is that mammalian RNA through rotary flash evaporator at 50°C for 15minutes. The polymerase does not avid bind Rifampicin.

nanoparticles of rifampicin in order to have a sustained thrice with distilled water to remove any excess of PVA release of the encapsulated drug so that the dosing remain intact with the formulation and were lyophilized. frequency can be reduced, reduce the dose dependent side Twelve formulations were prepared effects of the drug, minimize the incidence of drug parameters considered for optimization were shown in resistance in the body; this normally occurs in the normal table1.

therapy when a single dose of the drug is missed and to

Rifampicin was received as a gift sample from advantages like lower toxicity, improved drug stability, Ronak Pharmaceuticals pvt Ltd., Patan. Stearic acid, PVA ease in modulation of production process to achieve aqueous soluble (cold), Methanol and Chloroform were purchased from Central Drug House (P) Ltd., New Delhi.

Solid lipid nanoparticles of rifampicin were SLNs formed were recovered by centrifugation at 13,000 The aim of this study was to prepare solid lipid rpm for 30 min at 4°C. The recovered SLNs were washed

Stability studies

EVALUATION:

DETERMINATION OF PARTICLE SIZE:

The particle size distribution of the nanoparticles refrigeration temperature. Sampling interval was one was determined by laser diffraction method using month. Samples were evaluated for clarity and % Microtrac Particle Size Analyzer. The samples were scanned entrapment efficiency. by the refractive index at 30 s run time Determination of In-vitro release studies entrapment efficiency the entrapment efficiency of the drug was determined by measuring the concentration of membrane of pore size 2.5nm membrane was soaked in free drug present in the supernatant after centrifugation at double distilled water for 12 hours before use. Simulated 13,000 RPM for 30 min at 4oC. The concentration of drug gastric fluid was used as a medium. 1 ml of the formulation present in the supernatant was determined through UV and 50 ml of simulated gastric fluid were taken in dialysis spectrophotometer (Schimadzu 1800, Japan) at 333nm. membrane. 5 ml samples were withdrawn at regular The percentage drugentrapment was determined by the intervals and replaced with fresh media. following formula.

RESULTS & DISCUSSION:

Table 1: formulation optimization of rifampicin SLN

Formulation code	Formulation ratio	Concentration of PVA (%)
	Rifampicin: stearic acid	
F1	1:1	1
F2	1:2	1
F3	1:3	1
F4	1:5	1
F5	1:1	2
F6	1:2	2
F7	1:3	2
F8	1:5	2
F9	1:1	3
F10	1:2	3
F11	1:3	3
F12	1:5	3

Table 2: percentage entrapment efficiency

Formulation code	Drug:lipid ratio	Concentration of PVA (%)	% EP
F1	1:1	1	29.3±0.9%
F2	1:2	1	28.07±0.5%
F3	1:3	1	33.87±0.8%
F4	1:5	1	20.48±0.9%
F5	1:1	2	48.09±0.1%
F6	1:2	2	77.57±0.5%
F7	1:3	2	57.9±0.7%
F8	1:5	2	36.9±0.9%
F9	1:1	3	33.94±0.4%
F10	1:2	3	50.8±0.7%
F11	1:3	3	69.4±0.8%
F12	1:5	3	40.7±0.9%

The release study was performed using a dialysis

The physical and chemical stability of prepared

Mangukia Dhruv et al. / Journal of Drug Discovery and Therapeutics 1 (5) 2013, 42-47

Table 3: stability studies of SLN of Rifampicin (sampling after one month)

Formulation code	Storage conditions						
	Room temperature (28ºC)		Refrigeration temperature(4°C)				
	Visual inspection % EP		Visual inspection	% EP			
F1		28.7%		28.9%			
F2		26.4%		26.1%			
F3		35.9%		36.1%			
F4	Emulsion was clear and SLN of	21.3%	Emulsion was clear and SLN of	21.5%			
F5	rifampicin were visible under	45.8%	rifampicin were visible under	45.9%			
F6	microscope	78.4%	microscope	78.3%			
F7		53.9%		53.4%			
F8		34.8%		34.9%			
F9		35.7%		36.1%			
F10		48.9%		47.1%			
F11		69.2%		69.8%			
F12		44.7%		43.9%			

Table 4: stability studies of SLN of Rifampicin (sampling after three months)

Formulation code	Storage conditions						
	Room temperature (28°C)		Refrigeration temperature(4°C)				
	Visual inspection % EP		Visual inspection	% EP			
F1		Fungal		28.4%			
F2		growth was		25.9			
F3		observed		35.7%			
F4	Emulsion was clear and SLN of	and hence	Emulsion was clear and SLN of	21.4%			
F5	rifampicin were visible under	% EP could	rifampicin were visible under	45.2%			
F6	microscope	not be	microscope	78.3%			
F7		determined		52.6%			
F8				34.3%			
F9				36.4%			
F10				46.5%			
F11				69.7%			
F12				43.4%			

Table 5: in-vitro release studies

T(MIN)	DRUG	F1	F2	F3	F4	F5	F6
0	0	0	0	0	0	0	0
15	14.6±0.5	5.5±0.8	5.6±0.3	4.6±0.2	7.4±0.6	8.14±0.7	2.194±0.4
30	38.4±0.3	7.8±0.7	8.1±0.1	7.4±0.3	9.2±0.7	10.72±0.4	2.48±0.7
45	46.7±0.9	11.6±0.4	11.8±0.2	11.7±0.8	11.7±0.9	11.95±0.5	2.57±0.4
60	65.8±0.4	15.7±0.1	16.3±0.4	13.6±0.7	13.5±0.3	13.9±0.4	2.57±0.2
90	79.2±0.2	21.8±0.5	22.6±0.1	20.1±0.5	19.6±0.8	22.77±0.4	3.91±0.6
120	89.9±0.1	27.7±0.4	29.7±0.1	25.6±0.2	25.6±0.7	28.24±0.6	4.7±0.8
180	93.8±0.4	35.4±0.6	35.7±0.4	30.8±0.3	37.4±0.6	31.09±0.6	6.36±0.4
240	-	39.7±0.3	40.6±0.7	35.7±0.6	43.6±0.5	31.98±0.3	8.15±0.5
300	-	41.1±0.1	42.2±0.5	38.9±0.5	51.8±0.5	33.08±0.7	8.97±0.7
360	-	45.7±0.2	47.5±0.2	43.2±0.6	66.7±0.5	35.51±0.3	9.67±0.3
420	-	53.6±0.3	55.5±0.6	51.1±0.3	68.6±0.5	37.62±0.7	10.36±0.4
480	-	57.7±0.5	58.6±0.8	55.7±0.6	75.4±0.6	39.24±0.2	10.67±0.7

Mangukia Dhruv et al. / Journal of Drug Discovery and Therapeutics 1 (5) 2013, 42-47

540	-	63.3±0.7	64.1±0.2	62.6±0.4	78.3±0.6	41.18±0.4	10.74±0.4
600	-	70.2±0.8	71.2±0.3	65.6±0.1	90.6±0.1	45.89±0.8	11.73±0.3
660	-	75.2±0.4	76.5±0.5	72.5±0.3	100.2±0.4	48.87±0.7	12.3±0.1
720	-	80.4±0.3	82.2±0.6	77.6±0.8		53.68±0.2	12.79±0.3

Table 6: in-vitro release studies

T(MIN)	F7	F8	F9	F10	F11	F12
0	0	0	0	0	0	0
15	4.4±0.8	7.1±0.3	5.2±0.8	6.54±0.7	2.9±0.6	7.1±0.3
30	6.3±0.6	8.5±0.8	9.1±0.6	8.7±0.2	2.4±0.8	8.5±0.8
45	9.8±0.5	10.6±0.3	12.1±0.8	10.8±0.4	3.2±0.4	11.98±0.6
60	10.3±0.7	13.58±0.5	14.3±0.6	11.1±0.7	3.4±0.8	13.58±0.5
90	11.42±0.6	19.7±0.2	21.7±0.3	18.7±0.4	4.1±0.8	22.76±0.8
120	14.79±0.8	24.5±0.3	25.3±0.2	23.3±0.7	4.3±0.7	28.24±0.1
180	15.45±0.4	29.8±0.4	32.4±0.2	25.9±0.3	6.4±0.4	31.05±0.4
240	16.34±0.1	34.77±0.6	35.6±0.9	29.7±0.6	7.2±0.3	31.85±0.7
300	17.45±0.8	39.34±0.5	42.8±0.8	30.4±0.7	7.3±0.2	33.07±0.6
360	19.24±0.3	43.59±0.7	44.4±0.8	33.1±0.5	9.3±0.2	35.44±0.7
420	18.57±0.5	50.53±0.3	52.3±0.8	35.6±0.5	9.4±0.1	37.47±0.7
480	20.12±0.7	54.7±0.7	55.4±0.6	39.7±0.6	9.9±0.6	39.24±0.1
540	21.810.4	59.8±0.1	62.5±0.5	41.2±0.7	10.4±0.5	42.28±0.4
600	23.78±0.3	66.7±0.3	66.8±0.4	43.4±0.7	11.4±0.3	45.77±0.8
660	25.86±0.3	70.7±0.8	71.3±0.4	45.7±0.8	13.2±0.8	48.87±0.4
720	28.87±0.3	74.7±0.3	77.9±0.7	50.8±0.3	13.4±0.6	53.87±0.5

Width (nm) Diam. (nm) % Intensity Z-Average (d.nm): 448 Peak 1: 649 90.4 511 Pdí: 0.421 8.8 994 Peak 2: 4261 0.001 Intercept: 0.932 Peak 3: 0.01 0.0

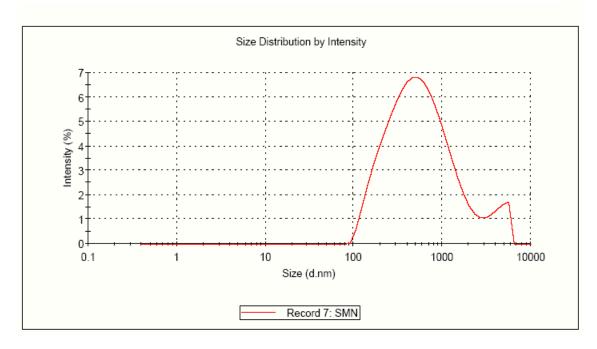


Figure 1: particle size analysis

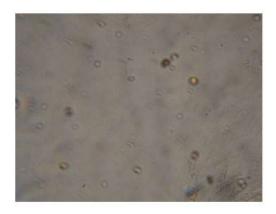
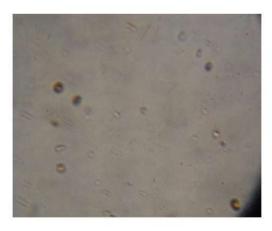



Figure 2: photos of SLN of Rifampicin

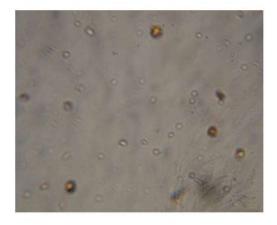


Figure 3: photos of SLN of rifampicin

CONCLUSION:

Emulsion solvent evaporation technique was found to be suitable for preparation of solid lipid nanoparticles of **5.** rifampicin. Rifampicin was successfully loaded in SLN of stearic acid by this method. In vitro release studies shows that this system was most suitable for the treatment of 6. Souto EB, Anselmi C, and Muller RH. Preparation and tuberculosis.

REFERENCES:

- 1. David Q, David T, Adriana G, Eric A and Eric Doelker. Adaptation and optimization of the emulsificationdiffusion technique to prepare lipidicnanospheres. Eur 8. J Pharm Biopharm 2005; 26:211-218.
- 2. Debra CQ, Jay KS, Gray AW, Esther LW, William WB. Efficacy of Microencapsulated rifampicin mvcobacterium tuberculosisinfected mice. Antimicrob Agents Chemother 1999: 1144-1151.
- 3. Debra CQ, Jay KS, Gray AW, Esther LW, William WB. Treatment of tuberculosis using a combination and oral dosing with isoniazid. Antimicrob Agents Chemother 2001; 45:1637-1644.
- 4. Deol P, Khuller G.K and Joshi K. Therapeutic efficacies of isoniazid and rifampicin encapsulated in lungspecific stealth liposomes against mycobacterium

- tuberculosis infection induced in mice. Antimicrob Agents Chemother1997; 41: 1211-1214.
- DongZhi H, ChangSheng X, KaiJin H and ChangHong Z. The production and characteristics of solid lipid nanoparticles (SLNs). Biomaterials 2003; 24: 1781-1785.
- characterization of n-dodecylferulate-loaded solid lipid nanoparticles (SLN®). Int.J.Pharm 2005; 295: 261-268.
- 7. Elina BS and Rainer HM. Lipid Nanoparticles (SLN and NLC) for drugdelivery. In: ElinaBS and Rainer HM, Nanotechnology forPharmaceutical applications: American scientific Publishers: pp 103-122.
- Hu FQ, Hong Y, Zhang HH, Fang M. Preparation of solid lipid nanoparticles with clobestol propionate by a novel solvent diffusion method in aqueous system andphysicochemical characterization. Int.J.Pharm2002; 239: 121-128.
- 9. Hu FQ, Hong Y. Preparation and characterization of solid lipid nanoparticlescontaining peptide. Int.J.Pharm2004; 273: 29-35.
- ofsustained release rifampicin loaded microspheres 10. Huabing C, Xueling C, Danrong D, Wei L, Jie L, Ting W, Yajiang Y, Huibi X, Xiangliang Y. Podophyllotoxin-loaded solid lipid nanoparticlesfor epidermal targeting. J. Control. Rel 2006; 110: 296-306.

Mangukia Dhruv et al. / Journal of Drug Discovery and Therapeutics 1 (5) 2013, 42-47

- 11. Indian Pharmacopoeia 1996, Vol II, The Indian Pharmacopoeia Commission, Ministryof health and Welfare, New Delhi. Pp 665-666.
- 12. Tripathi KD. Essential of medical pharmacology. In: K.D.tripathi. Anti tuberculardrugs; Jaypee Brothers medical publishers (P) ltd. IVth edition: pp 752-763.
- 13. Kerstin T, Carsten K, Mohammad S and Carsten O. Transfection with different colloidal systems: comparison of solid lipid nanoparticles andliposomes. J. Control. Rel. 2004; 97: 321-332.
- distributionand bioavailability of clozapine solid lipid

- nanoparticles after intravenous and intraduodenal administration. J. Control. Rel. 2005; 107: 215-228.
- 15. Lisa CT, Viness P and Michael PD. Tuberculosis chemotherapy: Current drug delivery approaches. Respiratory research 2006; 7:118-136.
- 16. Manisha D and Khuller GK. Chemotherapy of Mycobacterium tuberculosis infectionsin mice with a combination of isoniazid and rifampicin entrapped in (DLlactide-co-glycolide) micropartices. Antimicrob. Chemother 2001; 47:829-835.
- 14. Kopparam M, Vobalaboina V. Pharmacokinetics, tissue 17. Michele T, Francesca D and Otto C. Preparation of solid lipidnanoparticles by a solvent emulsification-diffusion technique. Int. J. Pharm 2003; 153-160.