

Journal of Drug Discovery and Therapeutics 1 (5) 2013, 37-41

RESEARCH ARTICLE

EVALUATION OF PKD2 GENE (G/C) POLYMORPHISM IN PATIENTS WITH AUTOSOMAL DOMINANT POLYCYSTIC KIDNEY DISEASE AMONG SOUTH INDIANS (MADURAI).

*P. Veeramuthumari, K. Srividhya, W.Isabel.

PG & Research Department of Zoology & Biotechnology, Lady Doak College, Madurai, Tamil Nadu, India.

ABSTRACT

Polycystic kidney disease (PKD) is the leading causes of end-stage renal failure (ESRD) and a common indication of dialysis / renal transplantation. Autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD) are the two forms of PKD. ADPKD is one of the most common monogenic inherited disorders with an approximate frequency of 1:500 individuals in different population. The PKD1 and PKD2 are on chromosomes 16p13.3 and 4q 13-23 and the most common cause of ADPKD is mutation in PKD1 and PKD2 genes. Hence the study aimed to analyze PKD2 (G/C) polymorphism. The study comprised of 50 ADPKD patients and 50 age, sex matched healthy individuals as a control subjects were selected among South Indian (Madurai) population. Single nucleotide polymorphism (SNP) study was carried out by isolating DNA which was subjected to PCR and RFLP analysis. The results showed to be G/C polymorphism at position 83 in exon 1 of the PKD2 gene among South Indian (Madurai) population with ADPKD and it also revealed that the "CC" "GC" mutant genotype and mutant "C" allelic frequency were found to be higher in patients (0.65) than in control subjects (0.38). The statistical analysis (chi – square test) showed that the frequency of mutant allele was significantly (at p<0.05) higher in ADPKD patients when compared to control subjects. Therefore, the current study found that an association of PKD2 gene polymorphism and ADPKD among South Indian (Madurai) population.

KEY WORDS: PKD 1 gene, allelic frequency, genotype, ARPKD, polycystin.

INTRODUCTION:

Polycystic kidney disease (PKD) is the most also focused on PKD2 gene. common genetic, life threatening disease, affecting more than 12.5 million people worldwide. It also has been chromosome 4 at position 22.1. More precisely, the PKD2 reported that 21, 14, 478 persons were affected by PKD gene is located from base pair 88,928,798 to base pair among Indian population (1). Therefore, the current study 88,998,930 on chromosome 4. It encodes a 5.3kb mRNA is to be focused on polycystic kidney disease. There are two transcript that is translated into a 968 amino acid protein. forms of PKD, i) Autosomal recessive polycystic kidney Polycystin-2 is a protein that in humans is encoded by the disease (ARPKD) and ii) Autosomal dominant polycystic PKD2 gene (8) (9). The protein may be an integral kidney disease (ADPKD). ADPKD occurs in worldwide and in membrane protein involved in cell-cell/matrix interactions. all races. ADPKD disease is one of the most commonly Transmembrane protein polycystin 2 (TRPP2) may function inherited conditions in human with an incidence of 1:500 in renal tubular development, morphology, and function. to 1:1000 compared to ARPKD (2) (3). It is genetically and may modulate intracellular calcium homoeostasis and heterogeneous with two genes identified, PKD1 (16P13.3) other signal transduction pathways. TRPP2 interacts with and PKD2 (4q21) (4) (5). The proteins encoded by the PKD1 transmembrane protein polycystin 1 (TRPP1) to produce and PKD2 genes are polycystin 1 and polycystin 2, interact cation-permeable currents. with each other in the primary cilia of renal epithelial cells

either in PKD1 or PKD2 leads to ADPKD. Hence, our study

The PKD2 gene is located on the long (q) arm of

The common complications includes Hypertension, and participate in complex signal transduction pathways, Urinary tract infection, Renal calculi, Cardiac valve which seems to be involved in chemosensory/mechanic abnormalities, Hernia of the anterior abdominal wall, functions and has some role in cell proliferation and Diabetes, Cerebral berry aneurysms (10). Systemic maturation (5). Linkage analysis studies have revealed that hypertension is also very common occurring in more than the mutation of PKD1 is responsible for 85%, whereas 75% of the renin-angiotensin system. The End stage renal mutation in PKD2 15% of the familial ADPKD (6) (7). Several disease usually occurs within 5 to 10 years after research reports were stating that, gene polymorphism development of renal failure. ADPKD patients were found to be developing ESRD in the mean age of 75.5 years (11).

Therefore the study focused on association of PKD2 gene population.

MATERIALS AND METHODS:

In the preliminary study undertaken by us, a hundred agarose gel electrophoresis. clinically proven Autosomal dominant polycystic kidney disease (ADPKD) patients within the age group of 10-80 STATISTICAL ANALYSIS: years were selected. Blood samples and related data were collected from the Department of Nephrology, Madurai Weinberg equilibrium. p + q=1, p = frequency of dominant Rajaji hospital, Madurai Kidney transplantation and allele, g = frequency of recessive allele. Research Centre Madurai (TN). The age and the sex The significant level of genotype and allelic frequency was matched healthy individuals as a control subjects were tested by chi square (χ^2) test. Odds ratio at 95% confidence selected from the general population. The blood samples intervals were calculated. were collected in EDTA coated tubes, and were stored at 4°C.

The study was carried out with the permission of Institutional biosafety ethical clearance committee (IBSE), (50%) females were equally affected by ADPKD and most of Lady Doak College and also it got Ethical clearance the patients were found to be in the age group of 30-50 committee certificate from Government Rajaji hospital, Madurai (TN).

GENOTYPING OF PKD 2 GENE G/C POLYMORPHISM:

individuals and ADPKD patients from peripheral red blood adults aged 20-40 years (16). The study also showed that cells (12, 13). The presence of DNA was confirmed with 72% of the patients have high blood pressure 0.7% Agarose gel electrophoresis and the amount of DNA (Hypertension) and also ADPKD patients were prone to was quantified using UV-Spectrophotometer (Systronics). have common associated complications like hematuria PCR-based restriction enzyme analysis was performed in (12%), renal calculi (10%), urinary tract infection (13%) the isolated DNA.

POLYMERASE CHAIN REACTION (PCR) ANALYSIS (13-15):

amplified by PCR. The genomic DNA (0.2ng) was incubated changes in the levels of Lipid profile (total cholesterol, in a total reaction volume of 50µl containing 10 pmol of triglycerides, variable low density lipoprotein, low density both forward primer 5'-TGA GCT CCG TGG GCG CGC GGA lipoprotein) and trace elements like calcium, sodium, GCC-3' and reverse 5'- CTG GGC TGG GGC ACG GCG GG -3' primer (Fermentas Life Sciences) for the PKD 2gene G/C Several study reported on PKD2 gene polymorphism, C/G Single nucleotide polymorphism(SNP) (G83C), using 2.5 insertion, C/T substation, deletion) among Caucasian, spain units of Tag DNA polymerase (Bangaloe genei, India) and Netherland population (Koptides et al. 1999, Hateboer dNTPs (200μM). Amplification for the PKD2 gene G83C SNP et al., 2000) was performed with an initial denaturation of 94°C for 5 electrophoresis under UV-transilluminator (13).

ANALYSIS (13- 15):

The PKD 2 G83C SNP creates a Bsp12861 polymorphism and autosomal dominant polycystic kidney (Fermentas Life Sciences, Germany) restriction enzyme disease in ADPKD patients and control group in the age recognition sequence site. The SNP was detected by group of 10-80 years among South Indian (Madurai) digestion of PCR amplified product (10µl) with Bsp12861 (1.0µl) for 3hrs at 37°C and inactivated by incubation at 65°C for 15 min (13). Restriction fragment size was performed by visualization of digested PCR product by 2%

Allelic frequency was calculated by using Hardy-

RESULTS AND DISCUSSION:

The study it was observed that (50%) males and years. This might be due to the gene inheritance in both the sexes equally and some of the normal individuals are also affected by ADPKD, it might be a follow up of simple Mendelian co-inheritance (14). Autosomal dominant Genomic DNA was isolated from all the healthy polycystic kidney disease most often initially presents in diabetic nephropathy (17%) cardiovascular problems (21%), renal osteodystrophy (13%) and anemia (14%) (Table: 1). The complications were noted in all patients The DNA sequence (279 bp) of PKD 2 gene was compared to control subjects, which might be due to potassium, iron, manganese, zinc, selenium (17, 18).

In the study the amplified PCR product (279bp) was min PCR thermsl cycler. The PCR amplification conditions digested with BSP12861. The restriction enzyme acts on were as follows: 30 cycles consisting of 30s denaturation at the "C" variation, but not on the "G" variation. The 94°C, 45s annealing at 61°C, 30s extension at 72°C. The PCR presence of "C" allele at position 83 creates restriction amplified product was confirmed by 2% agarose gel sites for Bsp12861, thereby resulting in either 3 fragments (279bp, 170bp, 109bp - Heterozygous mutant) or 2 fragments (170bp, 109bp - Homozygous mutant). If there RESTRICTION FRAGMENT LENGTH POLYMORPHISM (RFLP) is no transversion of "C" allele at position then the restriction site for BSP12861 is abolished, as a results of

type - Homozygous).

subjects and ADPKD subjects in both genotype and allele interval = 1.630 - 6.532)

which there is no change of the PCR product (279bp - wild frequency among South Indian (Madurai) population (Table: 2). Koptides et al., (1999) (14) work also identified The allelic frequency was calculated by using this polymorphism at position 83 among Caucasians which Hardy-Weinberg equation and the study group showed the was occupied by either G or C encoding either arginine or mutant "C" allelic frequency (0.65) to be significantly proline (R28P) this polymorphism enabled us to verify the higher in ADPKD patients than in control subjects (0.38). disease was co-inherited with allele "C". The calculated There was a significant difference (P=0.001 at 5%) was odds ratio (OR) showed that individuals with mutant found in genotype and allelic frequency between the genotype (G/C, C/C) have 3.6 fold risk for Autosomal ADPKD patients and control group between the control dominant polycystic kidney disease (95% confidence

Table 1: ADPKD associated complications in ADPKD patients among South Indian (Madurai) population.

Complications	Occurrence of frequency in percentage
Hematuria	12%
Renal calculi	10%
Urinary tract infection	13%
Diabetic nephropathy	17%
Arthrosclerosis	21%
Anemia	14%
Osteodystrophy	13%

Table 2: Prevalence of genotype and allelic frequency of PKD2 (Arg/Pro 83 G/C) in ADPKD patients and control subjects among South Indian (Madurai) population:

Genotype	Control subjects (n = 50)	ADPKD subjects (n = 50)
C/C Homozygous mutant	10 (20%)	23 (46%)
G/C Heterozygous mutant	18 (36%)	19 (38%)
G/G Homozygous normal	22 (44%)	8 (16%)
Allele frequency		
C (Mutant)	0.38	0.65
G (Normal)	0.62	0.35

(at p<0.001, p<0.05 significant)

Table 3: International reports on PKD1 & 2 gene polymorphism in different population:

Author and Year	gene	Population	Mutation
Xenophontos et al., (1997)	PKD2	Cyprus	SSCP (C insertion)
(19)			Frameshift mutation
Pei <i>et al.,</i> (1998) (20)	PKD2	Canadian Kinderds	Frameshift mutation
Watnick et al., (1998) (21)	PKD1	Maryland population	Polymorphism
Kopides <i>et al.,</i> (1999) (14)	PKD2	Caucasians	C/G insertion polymorphism
Constantinides et al., (1999)	PKD1	Caucasians, Greek	A/G polymorphism
(22)		Greek-Cypriot	C/T polymorphism
Torra et al., (1999) (23)	PKD2	Spain	Nonsense mutation, Frameshift, Missense, polymorphism in exon 1
Hateboer et al.,	PKD2	Spain, Netherlands, UK,	C-T substitution, deletion, Nonsense mutation,
(1999, 2000) (24, 25)		Bulgaria, Australia	Frameshift, Missense, Splice mutation.

Koptides <i>et al.,</i> (2000) (26)	PKD1	Cyprus	Mutation in exon 24
	PKD2		Mutation in exon 1
Katja Vouk et al., (2006) (27)	PKD1	Slovenia	Frameshift/ Missense mutation
	PKD2		Nonsense mutation

The distribution of genotypes (G/C, C/C, G/G) for PKD2 gene polymorphism varies among different populations (Caucasian, Japanese, Canadian, Cyprus, Spain 4. and UK populations) (19-26). Till date, there is no study available for the prevalence of PKD2 gene polymorphism among ADPKD patients in South Indian population.

Susceptibility to ADPKD has significant genetic components. The PKD2 gene provides instruction for 5. making a protein called poolycystin-2 this protein is found in the kidneys before birth and in many adult kidneys. Polklycystin-2 would be functioning as a channel spanning **6.** the cell membrane of the kidney cells. In conjugation with polycystin-1, the channel transcripts positively charged atoms (ions) particularly calcium ions into the cells. The influx of calcium ions triggers a cascade of chemical 7. reactions inside the cell that might instruct the cell to undergo certain changes polycyustin-1 and polycystin-2 work together to help regulate cell growth and division, cell movement and interaction with other cells. The interaction 8. of polycystin-1 and polycystin-2 in the renal tubules promotes a normal development and function of the kidneys (27). Hence, the study associating PKD2 gene 9. polymorphism and autosomal polycystic kidney disease was conducted among South Indian (Madurai) population.

Therefore, in accordance with the previously published reports the present study also demonstrated 10. Hateboer N, Veldhusen B, Peters D, Breuning MH, Dijk that an association between the PKD2 (mutant genotype) gene polymorphism and autosomal dominant polycystic kidney disease among South Indian (Madurai) population The future study will be focused on PKD1 and 3 gene polymorphism and sequencing the same population and 11. Torres VE, Harris PC (2007): Polycystic kidney disease, further research on the DNA based drug design by using bioinformatics databases which might help the physicians in providing the better treatment for polycystic kidney 12. Sambrook J and Russel DW (1993), Molecular cloning, a disease patients.

REFERENCES:

- 1. Nagpal S, Pankaj (2009): Polycystic kidney treatment Inbdia, Polycystic Kidney Surgery hospital, India.
- 2. Persu A, Stoenoiu T, Messiaen S (2002): Modifier effect of ENOS in autosomal polycystic kidney disease. Hum Mol. Genet 11:229-241.
- 3. Grantham JJ and Calvet PJ (2001): Polycystin-2 the kidney disease (ADPKD), is a Ca2+- permeable non

- selective cation channel. Proc Natl Acad Sci USA 98 (3): 790-792.
- Radvind D, Walker R, Gibson R, Foresst S, Richard R, Friend K, Shieffied L, Kincaid Smith A, Dank D(1992): Phenotype and genotype heterogenecity in Autosomal dominant polycystic kidney disease. Lancet 340; 1330-1333.
- Igarishi P, Somlo S (2002): Genetics and pathogenesis of Polycystic Kidney Disease. J Am Soc Nephrol 13:2384-2398.
- European polycystic kidney disease consortium: The polycystic kidney disease 1 gene encodes a 14kb transcript and lies within a duplicated region on chromosome 16.
- Gogusev J, Murakami I, Doussau M, Telvi L, Stojkoski A, Lesavre P, Droz D (2003)- Molecular cytogenic aberration in Autosomal dominant polycystic kidney disease tissue, J Am Nephrol 14:359-356.
- Hayashi T, Mochizuki T, Reynolds DM, Somlo S (1992): Characterization of Autosomal Dominant Polycystic Kidney disease. Science 272: 1339 - 1342.
- Yoder BK, Hou X, Guay- Woodford LM (2002): The polycystic kidney disease proteins, polycystin-1,polycystin-2, Polaris,cystin co-localized in renal cilia, J Am Soc Nephrol 13:2508-2516.
- MA, Afzal AR, Jeffery S, Saggar AK, Torra R, Dimitrakov D, Manitez I, Sanz S, Krawczak M, and Ravine D (2000): Locations of mutations within the PKD2 gene influences clinical outcome Kidney int 57: 1444 - 1451.
- genes, proteins, animal models, disease mechanism and therapeutic oppurtunities *J. int med* 10:1365-2789.
- laboratory manual, III Edition, Blackwell publisher, A16.
- 13. Veeramuthumari P, Isabel W, Kannan K (2011): A atudy on the level of $T_{3,}\,T_{4,}\,TSH$ and the association of A/G polymorphism with CTLA-4 gene in Graves' hyperthyroidism among south Indian population.
- 14. Koptides M, Hadjimichael C, Koupepidou P, Pierides A, Constantinou Deltas C (1999): Germinal and somatic mutatiin the PKD2 gene of renal cysts in abnormal dominant polycystic kidney disease. Hum Mol Genet 8(3):509-513.
- protein mutated in autosomal dominant polycystic 15. Chauvet V, Quian F, Boute N (2002): Expression of PKD1 and PKD2 transcripts the proteins in human

- Pathol 160:973-983.
- 16. Verghese P, Jordan M, Henrique S, Lederman M, Peter J, H (2008): Polycystic Kidney Diseases- department of nephrology, University of Washington University of Pennsylvania WWW.emedicinespecialtus >pediatrics:General medicine > Nephrology.
- 17. Dumm NT, Giammona AM, Touceda LA and Raimondi C (2003): Lipid abnormalities in chronic renal failure patients undergoing hemodialysis. Lip and health des 24. Hateboer N, Dijk MA, Bogdanova N (1999): Comparison 2:1-6.
- 18. Dumm NT, Giammona AM, Touceda LA and Raimondi C patients undergoing hemodialysis. Medicina (Buenos Aires) 61: 142-146.
- 19. Xenophontos S, Constantinides R, Hayashi T, Mochizuki translation frameshift mutation induces by a cytosine insertion in the Polycystic Kidney Disease 2 gene (PKD2). Hum Mol Genet 2:949 - 953.
- 20. Pei Y, Wang K, Kasenda M, Paterson AD, Chan G, Liang Y, Roscoe J, Brissenden J, Hefferton D, Parfrey P, Somlo 27. Vouk K, Strmecki L, Stekrova J, Reiterova J, Bidovec M, S, ST. George - Hyslop P (1998): A spectrum of mutation in polycystic kidney disease - 2(PKD2) gene from eight Canadian kindred. J Am Soc Nephrol 9:1853 -1860.
- 21. Watnick T, He N, Wang K, Liang Y, Parfrey P, Hefferton D, St George-Hyslop P, Germino G, Pei Y (2000): pathogenic effect of trans-heterozygous mutations. Nat Genet 25:143-144.

- embryo and during normal kidney development. Am J 22. Constantinides R, Xenophontos S, Nepytou P, Nomura S, Pierides A, Constantinou C (1999): New amino acid polymorphism: Evolution OF alleles. Hum Genet 99:644-647.
 - and 23. Torra R, Viribay M, Tellaria D, Badenas C, Watson M, Harris P, Darnell A, San Millan JL(1999): Seven novel mutations of the PKD2 gene families with autosomal dominant polycyctic kidney disease. Kidney international 56:28 - 33.
 - of phenotypes of polycystic kidney disease types 1 and 2. Lancet: 353: 103-07.
- (2001): Lipid abnormalities in chronic renal failure 25. Koptides M, Mean R, Demetriou K, Pierides A, Deltas CC (2000): Genetic evidence for a trans-heterozygous model for cystogenesis in autosomal dominant polycystic kidney disease. Hum Mol Genet 9:447–452.
- T, Somlo S, Pierides A, and Delta CC (1997): A 26. Hateboer N, Veldhusen B, Peters D, Breuning MH, Dijk MA, Afzal AR, Jeffery S, Saggar AK, Torra R, Dimitrakov D, Matinez I, Sanz S, Krawczak M, and Ravine D (2000): Location of mutations within the PKD2 gene influences clinical outcome. Kidney Int 57: 1444-1451.
 - Hudler P, Kenig A, Jereb S, Zupanic-Pajnic I, Balazic J, Haarpaintner G, Leskovar B, Adamlje A, Skoflic A, Dovc R, Hojs R and Komel R(2006): PKD1 and PKD2 mutations in Slovenian families with autosomal dominant polycystic kidney disease. BMC Medical Genetics, 7:6.
- Mutations of PKD1in ADPKD2 cysts suggest a 28. Foggensteiner L, Beven AP, Thomos R, Boulter C, Bradley J, Klinger K, Sandford R (2000): Celular and sub cellular distribution of Polycystin-2, the protein product of PKD geneAm Soc Nephrol 11:814-827.