ISSN: 2320 - 4230

Journal of Drug Discovery and Therapeutics 1 (5) 2013, 29-36

RESEARCH ARTICLE

SYNTHESIS, CHARACTERIZATION AND EVALUATION OF MICROBIAL ACTIVITY OF SOME HETEROCYCLIC COMPOUNDS CONTAINING BENZOTHIAZOLE MOIETIES

Rekha.S¹, Prateek bisht¹, Chandrashekhara.S², Shantharam. U³, Vineeth chandy¹, Prof. Satyanand Tyagi⁴ ¹Dept. of Pharmaceutical chemistry, T. John College of Pharmacy, Bangalore, Karnataka, India-560042. ²Dept. of Pharmaceutics, M.M College of Pharmacy, Belgaum, Karnataka, India-590016. ³Dept. of Pharmaceutical chemistry, Government College of Pharmacy, Bangalore, Karnataka, India-560027. ⁴President & Founder, Tyagi Pharmacy Association (TPA) & Scientific Writer (Pharmacy), New Delhi, India- 110074.

ABSTRACT

New derivatives of five member heterocyclic compounds containing benzothiazole rings are reported. These compounds have been characterized by elemental analysis, FT-IR and ¹H NMR spectroscopy, ¹³ C NMR and Mass spectral analysis. This study was designed to show the microbial activity of substituted benzothiazoles. The compounds were screened for antibacterial activity against Escherichia coli, Staphylococcus aureus and Bacillus subtilis in nutrient agar medium, and for antifungal activity against Aspergillus niger and Candida albicans in Sabouraud's dextrose agar medium. The results show that the derivatives containing benzothiazole moiety are more active.

KEYWORDS: Benzothiazole, Escherichia coli, Aspergillus niger, Sabouraud's dextrose agar medium

INTRODUCTION:

and are essential for life. They play a vital role in the analysis and spectral data. metabolism of all living cells. There are vast numbers of pharmacologically active heterocyclic compounds, many of MATERIALS AND METHODS: which are a regular clinical use. Nitrogen, sulphur and antitumor, anti-inflammatory, antilieshmanial Among the synthesized compounds, 6b showed good NMR was CDCl₃. antibacterial activity but less potent as compared to

standard reference drug sulfacetamide. 6c showed anti-Chemistry of heterocyclic compounds is one of the fungal activity but less potent as compared to standard leading lines of investigations in the organic chemistry, reference drug clotrimazole. Structures of the newly Heterocyclic compounds are widely distributed in nature synthesized compounds were established by elemental

The chemicals used in the present project work oxygen containing five member heterocyclic compounds were purchased from Rankem, Merck and Spectrochem. have occupied enormous significance in the field of drug. The melting point of the synthesized compound was discovery process. We report herein the synthesis of five determined by open capillary with Thiel's melting point membered heterocyclic derivative benzothiazole. On the tube (capillary tube method). TLC plates were prepared by other hand, benzothiazoles are heterocyclic compounds using Merck Silica Gel 60 GF 254. Visualization was done in with multiple applications and, although they have been UV light chamber at 254 nm, iodine chamber. The IR known from long ago to be biologically active.² It is bicyclic spectra of the synthesized compounds were recorded on a ring system with diverse chemical reactivity and broad Fourier Transform Infra Red spectrometer (model spectrum of biological activities such as antimicrobial, Shimadzu 8400 S) in the range of 400-4000 cm⁻¹ as KBr and pellets. (¹H NMR) data of the compound was carried out in antifungal.³ The synthesized compounds were screened for Bruker 200 spectrospin NMR at Astra Zeneca Pharma India their antibacterial in nutrient agar medium, and for Limited, Bangalore and Bruker 400 spectrospin NMR at antifungal activity in Sabouraud's dextrose agar medium. Indian Institute of Science, Bangalore. The solvent used for

PROTOCOL OF SYNTHESIS:

Scheme 1 NH_2 $NH_2NH_2.H_2O$ KSCN, Br₂/ GAA NH.NH₂ Conc.HCl NH_3 2 3 1 Ethylacetoacetate Ethanol 5 Scheme 2 DMF, CuI Pot.Carbonate 5 6 Scheme 3 DMF, CuO Pot.Carbonate 5 6 6 - Cl ŃΗ ĊH₃ **6a 6c 6d**

6b

Synthesis of 2-amino- 7-chloro-6-fluoro benzothiazole (2): under nitrogen atmosphere and is monitered under TLC.

added. The mixture was placed in freezing mixture of ice desired product. and salt, mechanically stirred while 1.6ml of bromine in 6ml of glacial acetic acid was added, from a dropping IN VITRO SCREENING FOR ANTI BACTERIAL ACTIVITY 5-9: funnel at such a rate that the temperature never raised beyond room temperature. After all the bromine was activity was carried out by using the methods mentioned added (105min), the solution was stirred for 2 hours below below. Here responses of microorganisms to the room temperature and at room temperature for 10- 12 synthesized compounds were measured with that of the hours, it was then allowed to stand overnight, during which standard reference drug. The standard reference drug used period an orange precipitate settle at the bottom, water was sulfacetamide. (6ml) was added guickly and slurry was heated at 85°c on a steam bath and filtered hot. The orange residue was placed Antibacterial Activity in a reaction flask and treated with 10ml of glacial acetic dried in a oven at 80°C.

benzothiazole (3):

added drop by drop in which was filtered, washed with wate rand recrystallized screening of the test compounds. from ethanol.

Synthesis of 7-chloro-2-(3-ethoxy-5-methyl-pyrazol-1-yl)- ➤ Nutrient agar 2% 6-fluoro-benzothiazole (4):

N-(7-Chloro-6-fluoro-benzothiazol-2-yl)-hydrazine and ethyl aceto acetate was placed in RBF which was add > 50 ml of ethanol and refluxed for 6-10 hrs. The mixture was poured in to crushed ice and solid filter reaction mixture and then monitered by TLC. The crude product All the ingredients were weighed and added to water. This recrystallized from ethanol.

Removal of chlorine by different groups (5a-b):

To 7-Chloro-2-(3-ethoxy-5-methyl-pyrazol-1-yl)-6fluoro-benzothiazole (0.1mol) and corresponding amine/ Apparatus:phenol/ alcohol (0.1mole) was placed in RBF along with and either of cuprous iodide (2.5 mol %) ^a or cuprous oxide sterilized in hot air oven. (2.5 mol %) b were added. The mixture heated for 16-24 hrs

To the glacial acetic acid (20ml) which is cooled The mixture poured in to crush ice and extracted with below room temperature, 8gm (0.08mol) of potassium successive portion of ethyl acetate or ether. The organic thiocyanate and 1.45g (0.01mol) of fluorochloroaniline was layer separated and solvent removed in vaccum to obtain

In our current study, evaluation of antimicrobial

The microbiological assay was based upon a acid heated again to 85°c and filtered hot. The combined comparison of inhibition of growth of microorganisms by filtrate was cooled and neutralized with concentrated measured concentrations of test compounds with that ammonia solution to pH 6. A dark yellow precipitate was produced by known concentration of a standard antibiotic. collected. Recrystalised from benzene, ethanol of (1:1) Two methods generally employed were turbidometric after treatment with animal charcoal gave yellow plates of (tube dilution) method and cylinder plate (cup-plate) 2-amino-6-fluoro-7-chloro-(1,3) benzothiazole and it is method. In the turbidometric method inhibition of growth of microbial culture in a uniform dilution of antibiotic in a fluid medium was measured. It was compared with the Synthesis of 2- hydrazino-amino- 7-chloro-6-fluoro synthesized compounds. Here the presence or absence of growth was measured. The cylinder plate method depends Conc. HCl (6 ml) was added drop wise with stirring upon diffusion of antibiotic from a vertical cylinder through to hydrazine hydrate (6 ml) at 5-100C continuously with a solidified agar layer in a petri dish or plate to an extent mechanical strirring. To it add ethylene glycol (24 ml) is such that growth of added micro-organisms was prevented dropping funnel at such rate entirely in a zone around the cylinder containing solution temperature does not exceed 5 -10 °C. To above add 2- of the antibiotics. The cup-plate method was simple and amino- 7-chloro-6-fluoro benzothiazole (0.03mol) and measurement of inhibition of microorganisms was also refluxed for 3-4 hours. On cooling solid separated out easy. Here this method was used for antibacterial

Preparation of medium:-

- Peptone 1%
- Beef extract 1%
- Sodium chloride 0.5%
- Distilled water up to 100ml

solution was heated on water bath for about one and halfhour till it becomes clear. This nutrient media was sterilized by autoclave.

All the apparatus like petri dishes, pipettes, glass 25ml of DMF/NMF. Anhydrous Potassium carbonate (3eq.) rods, test-tubes were properly wrapped with papers and

Name of Microorganism

Gram +Ve microorganisms

- Staphylococcus aureus (MTCC No. 96)
- Bacillus subtilis (MTCC No. 121).

Gram -Ve microorganisms

Escherichia coli (MTCC No. 521).

Agar plate disc diffusion method:-

- The antibacterial activity was assayed by agar plate * disc diffusion method at the concentration of 50 µg per required concentration of the analogues to the plates. disc.
- All the synthesized compounds were tested in vitro were used. for their antibacterial activity against Micro organisms such and Escherichia coli (gram negative) strains.
- Each test compounds were dissolved in 🌣 dimethylsulphoxide (DMSO) to get a concentration of 10 . mg/mL.
- The disc (6 mm in diameter) was impregnated with **Preparation of standard solution:** 5 μL of each test solution to get 50 μg/disc, air dried and placed on the agar medium, previously seeded with 0.2 mL appropriate quantity of ethanol to obtain the of broth culture of each organism for 18 hours.
- The plates were incubated at 37 °C for 24 hours zone of inhibition were checked. and the minimum inhibitiory concentration measured in mg/l.
- Discs impregnated with DMSO were used as a antibacterial reference standard.

ANTIFUNGAL ACTIVITY: 5-9

Principle

The antifungal activity of all newly synthesized o done by using filter disc method. Clotrimazole was used as 121°C for 15 minutes at 15psi. a standard drug. Activity of the compounds was recorded o organism was sensitive or resistant to the compound.

Materials used:

- Test organisms: Candida albicans was used for the same to get concentration of 1000µg/ml. determination of the activity.
- **Growth Media:** The activity was conducted on the each compound to be tested. Sabouraud dextrose agar media.

Composition:

Enzymatic digest of Casein 5g

- Enzymatic digest of Animal Tissue 5g
- Dextrose 20g
- Final pH 5.6 ±0.2 at 25 °C
- Purified water 1000ml

Apparatus:

- Petri plate: Glass plate, which was previousl sterilized by Dry Heat Sterilization was used.
- Pipette: Micropipette was used for adding the
- Glass wares: 500ml conical flask and test tubes

as Staphylococcus aureus, Bacillus subtilis (gram positive), Compounds screened: all the synthesized benzothiazole derivatives.

- Solvent used: Dimethyl sulfoxide
- Standard used: Clotrimazole

The standard drug clotrimazole was dissolved in Concentration range of 500, 750 and 1000µg/ml and the

Preparation of test solution:

Specified quantity (100mg) of the compound was control and amoxicillin and ciprofloxacin discs as accurately weighed and dissolved in 100ml of DMSO to get the 1000µg/ml stock solution. Further dilution was made to obtain the concentration in the range 500µg/ml, 750µg/ml and 1000µg/ml.

Procedure:

- 30g of the medium was suspended in 1000ml of benzotriazole derivatives were examined against Candida purified water. The mixture was allowed to boil till it forms albicans. Antifungal screening of all the derivatives was a homogeneous solution. The medium was autoclaved at
- Media was cooled to the temperature of by measuring the zone of inhibition in mm, and compared approximately 40°C temperature and microorganisms were with the standard zone of inhibition produced by inoculated to the media. 150ml was transferred to a petri clotrimazole. This determination indicates whether the plates aseptically. Two such plates were prepared for each organism.
 - Plates were allowed to cool for 20 minutes. 0
 - Compounds were dissolved in DMSO and diluted in
 - Both high and low strength discs were applied for
 - The organism is reported as being sensitive if clear zone appears around both discs.

Table 1: Screening of Antibacterial activity of synthesized compounds

	Zone of inhibition (mm)					
Compound	Antibacterial activity					
	S.aureus	B.subtilis	E.coli	P.vulgaris		
6	11	10	7	12		
6a	24	31	21	14		
6b	13	13	16	27		
6c	8	9	10	16		
6d	10	14	11	17		
Sulfacetamide	25	28	27	31		

Table 2: Screening of Antifungal activity of synthesized compounds

Compound code	Conc (µgm/ml)	Zone of inhibition (mm), C.albicans
6	1000	11
6a	1000	15
6b	1000	13
6c	1000	12
6d	1000	17
Clotrimaxazole	1000	22

RESULTS AND DISCUSSION:

their anti-bacterial activities against S.aureus, B.subtilis and was found to be very less potent towards anti-fungal albicans. Compounds 6a, 6b and 6d showed anti-fungal be very less potent towards anti-bacterial activity as drug clotrimazole. Compounds 6b, 6c and 6d showed good

antibacterial activity but less potent as compared to All the synthesized compounds were screened for standard reference drug sulfacetamide. Compounds 6c-d E.coli and for anti-fungal activities against Candida activity. Rest all the synthesized compounds were found to activity but less potent as compared to standard reference compared to standard reference drug sulfacetamide.

Table 3: List of compounds synthesized

6	F CI	7-Chloro-2-(3-ethoxy-5-methyl- pyrazol-1-yl)-6-fluoro- benzothiazole
6a	F HN N	Cyclohexyl-[2-(3-ethoxy-5-methyl-pyrazol-1-yl)-6-fluoro-benzothiazol-7-yl]-amine
6b		2-(3-Ethoxy-5-methyl-pyrazol-1-yl)-6-fluoro-7-morpholin-4-yl-benzothiazole

Rekha.S et al. / Journal of Drug Discovery and Therapeutics 1 (5) 2013, 29-36

6c	F N N O N O N O N O N O N O N O N O N O	(E)-4-((6-chloro-5-fluoro-1 <i>H</i> -benzo[<i>d</i>]imidazol-2-ylimino) methyl)-2-methoxyphenol.
6d	Z Z C H ₃	2-(3-Ethoxy-5-methyl-pyrazol-1-yl)-6-fluoro-7-(4-methyl-piperazin-1-yl)-benzothiazole

Table 4: Physicochemical properties of synthesized compounds

Sr. No.	Compound code	Molecular Formula	Mol. Weight	Melting Point (°C)	% yield	R_f value
01	6	C ₁₃ H ₁₁ CIFN ₃ OS	312	167	57%	0.75*
02	6a	C ₁₉ H ₂₃ FN ₄ OS	374	150	58%	0.73*
03	6b	C ₁₇ H ₁₉ FN ₄ O ₂ S	362	155	51%	0.80**
04	6c	C ₁₉ H ₁₆ FN ₃ O ₂ S	369	175	55%	0.73*
05	6d	C ₁₈ H ₂₂ FN ₄ OS	375	152	48%	0.82**

^{*}Mobile phase- n-Hexane: Ethyl acetate (3:1)

Table 5: Predicted mole inspiration data of synthesized compounds

Sr. No	Comp. Code	GPCR ligand	Ion channel modulator	Kinase inhibitor	Nuclear receptor ligand	miLogP	TPSA(total polar surface area)
01	6	-0.75	-1.01	-0.70	-1.52	4.165	39.952
02	6a	-0.33	-0.52	-0.53	-1.22	3.048	50.435
03	6b	-0.38	-0.56	-0.62	-0.96	3.332	49.435
04	6c	-0.51	-0.67	-0.59	-0.97	5.892	38.195
05	6d	-0.42	-0.71	-0.51	-1.00	5.113	46.547

^{**}Mobile phase- n-Hexane: Ethyl acetate: methanol (3:1:0.25)

Table 6: Predicted data of synthesized compounds

Sr. No.	Compound code	Calculated % of element (C, H, f,0, N)	Clog p	Drug likeness	Drug score
01	6	50.08 , 3.56, , 6.09, 13.48 5.13, 10.29, 11.37	5.91	-4.12	0.28
02	6a	56.34, 5.28 , 5.24, 15.46, 8.83, 8.85	4.69	-0.81	0.32
03	6b	61.77 , 4.37 , 5.14, 11.37, 8.66, 8.68	4.61	-1.69	0.39
04	6c	61.77, 4.37, 5.14, 11.37, 8.66, 8.68	6.71	-3.93	0.19
05	6d	57.58, 5.91, 5.06, 18.65 , 4.26, 8.54	4.81	-3.92	0.67

Table 7: Infra red spectral study of the synthesized compounds

Sr. No.	Compound Code	Molecular nature and Spectral peaks (cm ⁻¹)
		(Ar str C=C) 1535, (C-H) 2924,(C-F) 1253, (C-Cl) 736, (NH)
01	6	3163,(C=O) 1656, (CH ₃)1350
		Ar(C=C)1529.80, (C-H)2951.79, (C-F)1276.70, (NH)3447.52, (C=O)
02	6a	1679.12 ((C=S)1492.89, (CH₃) 1454.11
		Ar(C=C)1507.67,(C-H)2994.12,.49, (NH) str 3317.97, (C=S)1392.81,
03	6b	(CH ₃) 1340.22 (C-F)1241
		Ar(C=C)1597.80,(C-H)2951.19,(C-F)1276.70, (NH ₂)3447.52, (C=O)
04	6с	1679.12(C=S) 1492.89, (CH ₃) 1454.80
		A(C=C)1597.80,(C-H)2951.19,(C-F)1276.70,(NH)str3298,(C=S)
05	6d	1492.89, (CH ₃) 1394.80 , (C-F) 1240.27

CONCLUSION:

The preliminary in-vitro antibacterial screening of novel benzothiazole substituents were reported. The **2.** compounds did not show promising antibacterial activity. The synthetic procedure was optimized for all steps and can easily be carried out on a multigram scale. Further structural optimization studies might thus represent a **3.** rationale for further investigation.

REFERENCES:

1. Tomi IHR, Tomma JH, Al-Daraji AHR, Al-Dujaili AH, Synthesis, characterization and comparative study the microbial activity of some heterocyclic compounds

- containing oxazole and benzothiazole moieties, Journal of Saudi chemical society, 9 may 2012.
- Prabhu PP, Pande S, Shastry CS, Synthesis and Biological Evaluation of Schiff's Bases of Some New Benzothiazole Derivatives as Antimicrobial Agents, IJCTR, 2011, 3, 185.
- Latrofa A, Franco MLA, Rosato A, Carone D, Vitali C, Structural modifications and antimicrobial activity of Ncycloalkenyl-2-acylalkylidene-2,3-dihydro-1,3benzothiazoles II, Framaco, 2005, 60, 291.
- **4.** Pelczar MJ, Chan ECS, Krieg NR. Microbiology. 5th edition New York: McGraw-Hill Book Company; 1986, 687-688, 73-98.

Rekha.S et al. / Journal of Drug Discovery and Therapeutics 1 (5) 2013, 29-36

- 5. Furniss BS. Vogel's textbook of practical organic chemistry. 5th edition: an imprint of Addison Wesley Longman; 1998, 1166-1168.
- 6. Chakraborty PA. Text Book of Microbiology. 2nd edition: 11. Rashid N, Jones PG, Ali M, Hussain R, Synthesis, New Central book agency (P) Ltd; 2005, 9-24, 57-64.
- 7. Microbiological Assay. Indian Pharmacopeia; 1996, II, 100-103.
- 8. Kokare CR. Pharmaceutical **Experiments** and Techniques. 2nd edition: Career Publications; 2007, 153- 12. Gajdos P, Magdolen P, Zahradnik P, Foltinova P, New 56.
- 9. Kaspady M, Narayanaswamy VK, Raju M, Rao GK, oxazoles and thiazoles as bioisosteres, LDDD,2009, 6,
- 10. Mishra S, Srivastava SK, Srivastava SD, Synthesis of 5arylidene-2-aryl-3-phenothiazinobenzotriazolo-

- acetamidyl)-1, 3-thiazolidine-4-ones (IX) as antiinflammatory, anticonvulsant, analgesic and antimicrobial agent, JIC, 1997, 36B, 826-830.
- characterization and biological evaluation of some thiourea derivatives bearing benzothiazole moiety as potential antimicrobial and anticancer agents, EJMC, 2010, 45(4),1323-1331.
- conjugated benzothiazole-N-oxides: Synthesis and biological activity, Molecules, 2009, 14, 5382.
- Synthesis, antibacterial activity of 2, 4-disubstituted 13. Pattan SR, Babu SNN, Angadi J, Synthesis and biological activity of 2-amino [5'-(4'-sulphonylbenzylidene)-2, 4thiazolidine dione]-7-(substituted)-6-fluoro benzothiazoles, IJHC, 2002, 11, 333.