ISSN: 2320 - 4230

Journal of Drug Discovery and Therapeutics 1 (5) 2013, 21-25

RESEARCH ARTICLE

FORMULATION AND EVALUATION OF SUSTAINED RELEASE TABLETS OF MEFENAMIC ACID USING HYDROPHILIC POLYMERS

Ashtamkar Joel*1, Chugh Naresh1 ¹ Department of Pharmacy, Vinayaka Missions University, Tamilnadu-India

ABSTRACT

Mefenamic acid is a non-steroidal anti-inflammatory drug used to treat pain, including menstrual pain. It has a dose of 250 mg 4 times daily. It has a very short half-life of 2 hours and thus controlling the release would be beneficial. In the present study, mefenamic acid 250 mg controlled release matrices were prepared by direct compression and invitro drug dissolution studies were performed to find out the drug release rate and patterns. Hydroxypropylmethylcellulose, Hydroxypropylcellulose and Hydroxyethylcellulose were used as rate controlling polymers. Hydroxypropylmethylcellulose was used as primary rate controlling polymer and effects of addition of Hydroxypropyl cellulose and Hydroxyethylcellulose on in-vitro drug dissolution were studied. Tablets were formulated using total polymer content as 30, 35 and 40 percent with 20 percent standard polymer content of Hydroxypropyl methylcellulose in all batches and varying the concentration of Hydroxypropyl cellulose and Hydroxyethylcellulose in the range of 10, 15 and 20 percent. In-vitro drug release was carried out using USP Type II at 50 rpm in 900 ml of acidic dissolution medium (pH 1.2) for 2 hours, followed by 900 ml alkaline dissolution medium (pH 7.4) up to 12 hours. Several kinetic models were applied to the dissolution profiles to determine the drug release kinetics.

KEYWORDS: Mefenamic acid, Hydroxypropyl methylcellulose, Hydroxypropyl cellulose, Hydroxyethyl cellulose, Release Kinetics.

INTRODUCTION:

Controlled release oral dosage forms are in the antipyretic in acute respiratory tract infection³. focus of interest for several reasons. Customer compliance with the trend to simplicity and more comfort of use, the Mefenamic prolonged drug release with more reliable blood levels administration. Following a single 1 gram oral dose, mean than those obtained with conventional dosage forms and life-cycle management of existing API's directed the been reported. Peak plasma levels are attained in 2 to 4 pharmaceutical development towards sustained release hours and the elimination half-life approximates 2 hours. formulations. The basic rationale for controlled drug The short biological half-life of 2 h following oral dosing alter the pharmacokinetics delivery is pharmacodynamics of pharmacologically active moieties by to maintain the desired steady state levels⁴⁻⁶. using novel drug delivery system or by modifying the molecular structure and /or physiological parameters oral dosage forms require drug administration three or inherent in a selected route of administration¹, four times daily to maintain adequate therapeutic Hydroxypropyl methylcellulose, Hydroxypropyl cellulose effectiveness, with inherent problems associated with and Hydroxyethyl cellulose can be used as matrix materials. patient compliance. In addition, conventional dosage forms The matrix may be tableted by direct compression of the do not protect patients against morning joint stiffness blend of active ingredient and certain hydrophilic carriers common in rheumatoid disease states. Thus the or from a wet granulation containing the drug and development and clinical use of sustained or controlled hydrophilic matrix material².

nonsteroidal anti-inflammatory (NSAI), antipyretic, and such as reduction of side effects, prolongation of drug analgesic agent that is used for the relief of postoperative action and improvement of bioavailability and patient and traumatic inflammation and swelling, antiphlogistic compliance.

and analgesic treatment of rheumatoid arthritis, and

Mefenamic acid solubility in water is 0.04 mg mL⁻¹. acid is rapidly absorbed after peak plasma levels ranging from 10 to 20 mg mL⁻¹ have and necessitates frequent administration of the drug in order

Moreover, dosage regimens involving conventional release dosage forms of NSAIDs may have several Mefenamic acid, an anthranilic acid derivative, is a advantages over the use of conventional formulations, Therefore, the formulation of MA as sustained release METHODS: dosage form matrix pellets could be an alternative approach to overcome the potential problems in the gastrointestinal tract, in addition to minimizing dosing frequency^{7,8}.

The present study is aimed at formulating sustained release matrix tablets of mefenamic acid using hydrophilic polymers viz. hydroxypropylmethylcellulose, hydroxypropylcellulose and hydroxyethylcellulose.

MATERIALS AND METHOD:

MATERIALS:

Mefenamic acid was obtained as gift sample from Pvt. Organics Ltd. Thane, Maharashtra. Hydroxypropyl methylcellulose (HPMC K 4M) was obtained as gift sample from Signet, Mumbai, Maharashtra. Hydroxypropyl cellulose and hydroxyethyl cellulose were obtained as gift sample from International Specialty Products, Mumbai, Maharashtra. Other materials used were of analytical grade and procured from commercial sources.

PREPARATION OF SUSTAINED RELEASE MATRIX TABLETS OF MEFENAMIC ACID:

Controlled release tablets of mefenamic acid were prepared direct compression method⁹ microcrystalline cellulose as directly compressible vehicle. Hydroxypropylmethylcellulose (HPMC K 4M), Hydroxypropylcellulose and Hydroxyethylcellulose were used as retardant material for preparation of tablets¹⁰. Other excipients were magnesium stearate as a lubricant and colloidal silicon dioxide as a glidant. For preparation of Controlled release tablets of miglitol, drug and polymer were weighed accurately, all the ingredients were sieved through 40 mesh screen and mixed with other ingredients and the powder mixture was compressed using 16 station rotary tablet compression machine using 5 mm punches. Tablet compression weight was adjusted to 50 mg. In total, 6 formulations containing different amounts of HPC (F1, F2, F3), and HEC (F4, F5, F6) were prepared.

The formula for various formulations attempted have been given in Table 1: Composition of sustained release mefenamic acid tablets

Ingredient	F1	F2	F3	F4	F5	F6
Mefenamic acid	250	250	250	250	250	250
HPMC K 4M	100	100	100	100	100	100
HPC 2M	50	75	100			
HEC 2M				50	75	100
MCC	90	65	40	90	65	40
Aerosil	5	5	5	5	5	5
Magnesium	5	5	5	5	5	5
Stearate						

Table 1: Composition and physical characters of sustained release mefenamic acid tablets

PHYSICAL CHARACTERIZATION OF FABRICATED TABLETS¹¹: ESTIMATION OF DRUG CONTENT¹²:

The quality control tests for the tablets, such as hardness, friability, weight variation etc. were determined the measurement of absorbance at 285 nm in 0.1 N HCL using reported procedure. The tablet crushing strength was was used for estimation of mefenamic acid. From each tested by commonly used Dial tablet hardness tester. batch of prepared tablets, 10 tablets were collected Friability was determined by Roche® friabilator (Electro lab randomly and powdered. A quantity of powder equivalent Pvt. Ltd., India), which was rotated for 4 min at 25 rpm. to 100 mg of mefenamic acid was transferred into a 100 ml After dedusting, the total remaining mass of the tablets volumetric flask, 60 ml 0.1 N HCL was added and the was recorded and the percent friability was calculated. solution was shaken for 15 to 20 minutes, diluted to Weight variation was determined by weighing 20 tablets volume with 0.1 M HCl, and filtered using a Whatman No. individually, the weight variation was calculated. Physical 42 filter paper. First 10 mL portion of filtrate was discarded characters observed for various batches are given in Table and subsequent portions were subjected to analysis. The 2: Evaluation of Physical characters of mefenamic acid drug content was estimated by measuring the absorbance tablets.

An UV/Vis spectrophotometric method based on of both standard and sample solutions at 285 nm using UV/Vis spectrophotometer (Systronic 2201). Results are tabulated in Table 3: Drug content In-vitro drug release studies of mefenamic acid tablets.

IN-VITRO RELEASE STUDIES:

The *in-vitro* dissolution studies were performed drug remained vs. Time in hours. using USP type 2 dissolution apparatus (paddle) at 50 rpm. The dissolution medium consisted of 1.2 pH medium for percentage drug release vs. Square root time. Korsmeyerfirst 2 hours and for subsequent 22 hours in phosphate Peppas equation - Log cumulative percentage of drug buffer pH 7.4 (900 ml), maintained at 37+0.5 °C. The release vs. Log time. release studies were conducted in triplicate. Aliquot of samples (5ml) were withdrawn at specific time intervals models for mefenamic acid tablets. and drug content was determined spectrophotometrically at 285 nm. Results are tabulated in Table 3: Drug content RESULTAND DISCUSSION: and In-vitro drug release studies of mefenamic acid tablets.

graphically in Figure 1: Plot of Cumulative % drug released acid using three retardants namely hydroxypropyl v/s Time for different formulation (F1-F6).

KINETICS OF IN-VITRO DRUG RELEASE¹³:

In-vitro release data obtained was treated to zero cellulose different concentrations and combinations. order rate equation, Higuchi's equation and Korsmeyer-Peppas equation to know precisely the mechanism of drug PHYSICAL CHARACTERIZATION OF TABLETS: release from matrix tablet.

modes of data treatment.

release vs. Time in hours.

First order equation - Log cumulative percentage

Higuchi's Diffusion equation - Cumulative

Results are tabulated in Table 4: Different kinetic

In present work an attempt has been made to Results of in-vitro dissolution studies are shown formulate controlled release matrix tablets of mefenamic methylcellulose used as primary rate controlling polymer and effect on in vitro drug dissolution were studied by addition of hydroxypropyl cellulose and hydroxyethyl

The formulation of tablets was done by using direct Release data obtained is treated with following compression technique which was found acceptable. All the formulations were prepared according to the formula Zero order equation - Cumulative percentage drug given in Table 1. The prepared matrix tablets were evaluated for various physical properties as indicated in Table 2.

Table 2: Evaluation of Physical characters of mefenamic acid tablets

Formulation code	Thickness (mm)**	Weight variation (%)	Hardness (N)**	Friability (%)*
F1	4.13 <u>+</u> 0.04	0.76 <u>+</u> 0.08	85.64 <u>+</u> 3.24	0.15 <u>+</u> 0.02
F2	4.17 <u>+</u> 0.02	1.21 <u>+</u> 0.11	88.15 <u>+</u> 1.86	0.13 <u>+</u> 0.01
F3	4.06 <u>+</u> 0.07	0.85 <u>+</u> 0.12	90.38 <u>+</u> 1.42	0.09 <u>+</u> 0.04
F4	4.04 <u>+</u> 0.05	0.97 <u>+</u> 0.09	81.72 <u>+</u> 3.29	0.19 <u>+</u> 0.02
F5	4.12 <u>+</u> 0.06	1.06 <u>+</u> 0.07	84.68 <u>+</u> 2.57	0.14 <u>+</u> 0.03
F6	4.09 <u>+</u> 0.02	1.31 <u>+</u> 0.13	86.74 <u>+</u> 2.19	0.12 <u>+</u> 0.05

^{*}All the values are expressed as a mean \pm SD., n = 3

The results of evaluation studies can be summarized as friability indicated that the compressibility of mefenamic follows:

The thickness of the formulations was found to be crushing strength of tablets was in the range of 81.72 + TABLETS: 3.29 N to 90.38 + 1.42 N. The loss in total weight of the tablets due to friability was less than 0.5% for all the indicated in Table 3. formulations The high value of crushing strength and low

acid and adjuvant was good.

in the range of 4.04 ± 0.05 mm to 4.17 ± 0.02 mm. The DRUG CONTENT AND IN-VITRO DRUG RELEASE OF

Drug content and in-vitro drug release studies are

Table 3: Drug content and in-vitro drug release studies of mefenamic acid tablets

Formulation code	Drug content (%)	Cumulative % drug release		
F1	98.17 ± 1.18	90.26 <u>+</u> 0.12		
F2	99.28 ± 0.83	86.08 <u>+</u> 0.08		
F3	101.34 ± 0.79	74.83 <u>+</u> 0.06		
F4	98.64 ± 1.43	97.42 <u>+</u> 0.17		

^{**} All the values are expressed as a mean + SD., n = 6

F5	100.43 ± 0.67	94.78 <u>+</u> 0.21
F6	98.16 ± 0.91	87.61 <u>+</u> 0.13

All the values are expressed as a mean + SD, n = 3

Drug content was found to be uniform among different cumulative percent release indicating no additional formulation of tablets and ranged from 98.16 ± 0.91% to retarding effect of hydroxyethyl cellulose in addition to 101.34 ± 0.79%. In-vitro drug release studies revealed that hydroxypropyl methylcellulose. formulations F1, F2 and F3 containing combination of hydroxypropyl methylcellulose and hydroxypropyl cellulose KINETICS OF DRUG RELEASE: showed release between 90.26 + 0.12 and 74.83+ 0.06 at the end of 24 hours. Cumulative release decreased as the dissolution data of miglitol controlled release tablet are concentration of polymer increased. Decrease in release shown in Table 4. Formulations F1, F2, F3, F5 and F6 have indicates rate controlling effect of hydroxypropyl cellulose Higuchi as best fit kinetic model for drug release indicating in addition to hydroxypropyl methylcellulose. Also the diffusion-controlled process of drug release. Formulation standard deviation is low which is usually observed by F4 have Korsmeyer - Peppas as best fit kinetic model for using single hydroxypropyl methylcellulose in similar drug release which follow anomalous mechanism for drug concentration. In-vitro drug release studies revealed that transport i.e. non-Fickian kinetics indicating deviation of formulations F4, F5 and F6 containing combination of drug release from Fick's law and where drug release is hydroxypropyl methylcellulose and hydroxyethylcellulose combination of pure diffusion controlled coupled with showed release between 97.42 + 0.17 and 87.61 + 0.13 at dissolution controlled drug release. the end of 24 hours. There is no significant decrease in

There are various applied mathematical models for

Table 4:

Formulation	Zero Order	First Order	Higuchi	Korsmeyer - Peppas			Best fit model
code	R ²	R ²	R ²	R ²	n	k	
F1	0.944	0.982	0.992	0.991	0.565	1.193	Higuchi
F2	0.941	0.971	0.989	0.988	0.509	1.207	Higuchi
F3	0.940	0.988	0.993	0.973	0.493	1.202	Higuchi
F4	0.937	0.988	0.990	0.993	0.540	1.267	Korsmeyer -
							Peppas
F5	0.959	0.969	0.998	0.996	0.549	1.226	Higuchi
F6	0.955	0.985	0.995	0.981	0.569	1.160	Higuchi

CONCLUSION:

Results of present research work demonstrate that the combination of hydrophilic polymers was successfully Organics Pvt. Limited (Thane, India) for providing employed for formulation of mefenamic acid controlled infrastructure facilities to carry out this research work. release tablets. It is observed that combination of polymers produce a more linear release from matrix tablets with low **REFERENCES**: standard deviation. Hydroxypropyl methylcellulose and hydroxypropyl cellulose showed more retardation effect 1. Yie WC, Senshang L. Drug Delivery: Controlled Release. than combination of hydroxypropyl methylcellulose and hydroxyethyl cellulose for oral controlled release tablets of mefenamic acid. In all the formulations, drug release rate is inversely proportional to the concentration of polymer. 2. Salsa T, Veiga F and Pina ME. Cellulose ether polymers From this study, it is possible to design promising oral controlled release matrix tablets containing mefenamic acid for the management of pain in various conditions with 3. Fang L, Numajiri S, Kobayashi D, et al. Physicochemical more efficacy and better patient compliance.

ACKNOWLEDGEMENT:

The authors are sincerely thankful to Meyer

- In: Swarbik J eds. Encyclopedia of Pharmaceutical Technology. Vol 2. 3rd ed. New York, USA: Informa Healthcare; 2007:1082-1103.
- in hydrophilic matrices. Drug Dev Ind Pharm. 1997; 23:92-93.
- and crystallographic characterization of mefenamic acid complexes with alkanolamines. J Pharm Sci. 2004; 93: 144-154.

Ashtamkar Joel Peres et al. / Journal of Drug Discovery and Therapeutics 1 (5) 2013, 21-25

- 4. Shinkuma D, Hamaguchi T, Yamanaka Y et al. Correlation between dissolution rate and bioavailability of different commercial mefenamic acid capsules, Int J 9. Pharm. 1984; 21:187-200.
- the Fenamates Experimental Observations on Flufenamic, Mefenamic, and Meclofenamic Acids, in Supplement to Annals of Physical Medicine - 11. Pena R, Verain. Analysis of different parameters of an Fenamates in Medicine, Symposium (Ed. P. H. Kendall), Bailliere, Tindall and Cassell, London 1966.
- **6.** J. E. F. Reynolds, Martindale: The Extra Pharmacopoeia, 31st ed. London: The Pharmaceutical Press; 1998: 58-59.
- 7. Khan S and Akhter M. Glyceride derivatives as potential prodrugs: synthesis, biological activity and kinetic studies of glyceride derivatives of mefenamic acid. Pharmazie; 2005;60:110-114.
- 8. Sevgi F, Kaynarsoy B, Ozyazici M, et al. A comparative histological study of alginate beads as a promising

- controlled release delivery for mefenamic acid. Pharm DevTechnol. 2008;13: 387-392.
- Robinson JR, Lee VHL. Controlled Drug Delivery. 2nd ed. New York: Marcel Dekker Inc; 1987:29-30.
- 5. Winder C, Kaump D, Glazko A, et al. Pharmacology of 10. Hogan JE. Hydroxypropyl methylcellulose sustained release technology. Drug Dev Ind Pharm. 1989; 15:975-999.
 - optimized prolonged release formulation obtained by five processes. In: Pharmaceutical Technology -Controlled Drug Release. Vol 2. London: Ellis Horwood; 2005:57-70.
 - 12. Singh H, Kumar R, Singh P. Development of UV spectrophotometric method for estimation of mefenamic acid in bulk and pharmaceutical dosage forms. Int J Pharm Pharm Sci. 2011; 3(2): 237 – 238.
 - 13. 13. Costa P, Manuel J, Lobo S. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001; 13:123-133.