

Journal of Drug Discovery and Therapeutics 1 (5) 2013, 17-20

RESEARCH ARTICLE

EVALUATION OF SEED OIL OF ZANTHOXYLUM ARMATUMFOR ANTIMICROBIAL ACTIVITY

Ankit Saini¹, Pragati Sharma¹, Devendra Pratap Singh*², Sandeep Singh³, Dilip K. Singh³ ¹Krishna College of Pharmacy, Bijnor, India ²Bhagwant Institute of Pharmacy, Muzaffarnagar, India ³Ashoka Institute of Technology and Management, Varanasi, India

ABSTRACT

Essential oils have proved to possess valuable antimicrobial and antimicrobial activity. The present work aims at finding out potential of essential oils whose antimicrobial activities have not been fully explored. The review of literature suggests that the essential oil of Zanthoxylum has good antimicrobial potential. It was considered to procure essential oil from the market and evaluate the same for chemical consistency and antimicrobial activity. This strengthens the belief that we should also undertake studies which should be of commercial significance and not only screening of medicinal plants. It is therefore, imperative to search alternative drugs for the treatment of microbial diseases to replace the existing drugs of doubtful efficacy and safety. The present research paper reveals the evaluation of seed oil of Zanthoxylum armatum for Antimicrobial Activity.

KEY WORDS: Zanthoxylum armatum, Essential oil, Antimicrobial Activity.

INTRODUCTION:

Plants are widely used in ethno-medicine around are well known and in particular, the antimicrobial tonic for health. activities of essential oils and their constituents, which are alkaloids (vilmprianone, panicutine, heterophylhisine), volatile oils etc. 4,5,6

ZANTHOXYLUM ARMATUM DC (TIMUR):

Z. armatum belongs to Rutaceae and several the world. Historically, therapeutic results have been species possess medicinal values like anaesthetic, mixed; quite often cures or symptomatic relief resulted. antibacterial, antifungal, anti-inflammatory, oro-dental Poisonings occurred at a high rate, also. Currently, one-care etc. Fruits of Z. armatum are known to contain quarter to one-half of all pharmaceuticals dispensed in the phytoconstituents like resins, alkaloids, and volatile oils United States having higher-plant origins, very few are Zanthoxylum is high in a Linalool. Linalool high oils offer us intended to use as antimicrobials, since we have relied on profound healing for infections, pain, swelling, spasms, bacterial and fungal sources for these activities¹. The allergies and injury. The oil is also deeply calming for the antimicrobial activities of many plant-derived compounds nervous system. It can be used daily and is a wonderful

Zanthoxylum armatum DC (Rutaceae) is mainly terpenes, have been studied in some details². The extensively used in the Indian system of medicine, as antimicrobial activities of aromatic substances have been carminative, stomachic and anthelmintic. The bark is known for more than seventy years. Among the natural pungent and stick from the plant is used in preventing products responsible for antimicrobial activities are toothache. The fruits and seeds are employed as an isolated constituents such as flavones, another, aromatic tonic in fever, dyspepsia, and expelling anthranilate derivatives, anthraquinone derivatives (rhein, roundworms⁸. Mehta et al has reported that the essential physcion, aloe- emodin and chrysophenol), diterpenoid oil of fruits of Z. armatum exhibited good antibacterial, 8-acetyl- antifungal and anthelmintic activities¹¹. Kokate et al reported that the petroleum ether extract of Z. armatum, showed significant insecticidal activity against Culex sp. with LC50 value of 20.45 ppm⁹.

Figure 1: Plant and Seeds of Zanthoxylum armatum DC (Timur)

MATERIAL AND METHOD:

MATERIAL:

The following chemicals, glassware, equipments and drug samples were used:

Table 1: Chemicals used

Sr. No	Chemicals	Specification	Manufacturer / Supplier
1.	DPPH	AR	RFCL Ltd. New Delhi
2.	Dichloromethane	AR	Merck specialities pvt Ltd. Mumbai
3.	Ethanol	AR	RFCL Ltd. New Delhi
4.	Helium gas	AR	Qualigens Fine chemical Mumbai.
5.	Methanol	AR	RFCL Ltd. New Delhi
6.	N-Hexane	AR	Merck specialities pvt Ltd. Mumbai
7.	Petroleum ether	AR	RFCL Ltd. New Delhi
8.	Phenol peptone	AR	Merck specialities pvt Ltd. Mumbai
9.	Sodium Chloride	AR	Merck specialities pvt Ltd. Mumbai

Table 2: Glassware used

Sr. No.	Glassware	Specification / Size	Manufacturer / Supplier
1.	Beakers	100 mL, 250 mL	Borosil Glass Works Ltd. Worli, Mumbai
2.	Conical flasks	250 mL	Borosil Glass Works Ltd. Worli, Mumbai
3.	Funnel	50 mm	Borosil Glass Works Ltd. Worli, Mumbai
4.	Glass plates	15	Ordinary
5.	Measuring	50 mL, 100 mL	Borosil Glass Works Ltd. Worli, Mumbai
	cylinder		
6.	Pipettes	1 mL, 5 mL, 10 mL	Borosil Glass Works Ltd. Worli, Mumbai
7.	Spiral glass	500 ml	Borosil Glass Works Ltd. Worli, Mumbai
	condenser		
8.	Volumetric flask	100 mL, 250 mL	Borosil Glass Works Ltd. Worli, Mumbai
9.	Weighing bottle	50 mL	Borosil Glass Works Ltd. Worli, Mumbai

Table 3: Apparatus / Equipments used

Sr. No.	Apparatus / equipments	Model	Manufacturer / Supplier
1.	Digital Balance	ST 123	Citron Electronic
2.	Camera	Cyber shot 7x DSQ 35	Sony
3.	Muffle furnace	SES 6649	Swastika Elec. & Sc. Works

Table 4: Drugs used

Sr. No.	Drugs	Company
1.	Gentamicin sulphate	Nicolas Piramal
2.	Kanamycin	Macleods Pharmaceutical

METHOD:

COLLECTION OF THE PLANT MATERIAL:

The plant material Z. armatum was collected from Akhori, PREPARATION OF THE MEDIA: District-Chamoli, Uttarakhand. The plant material was University, Bhimtal and a voucher sample was submitted there.

EXTRACTION OF THE ESSENTIAL OIL:

The fresh plant material 1.0 kg was subjected to steam distillation using a copper electric still, fitted with a spiral glass condenser. The distillate was saturated with NaCl and the oil was extracted with n- hexane and dichloromethane. The organic phase was dried over anhydrous sodium sulphate and the solvent was distilled in rotary vacuum. The standard drugs used were Gentamicin sulphate and evaporator at 35°C. Yield was 0.62% w/w.

EVALUATION FOR ANTIMICROBIAL ACTIVITY:

Antimicrobial assays were done by serial dilution as per the method described. 10, 11

BACTERIAL AND FUNGAL CULTURES:

All the microorganisms used were isolated pathogens. The pathogens were procured from the Siddhartha Institute of Pharmacy, Dehradun. Cultures were maintained in the laboratory by regular sub culturing media.

STRAINS AND STANDARDS:

The bacterial strains selected for study were E. coli,

selected for study were Candida albicans Aspergillus niger, Cryptococcyus neoformans.

The experiment was performed using broth culture authenticated at Department of Pharmacy, Kumaun method. Basic medium was prepared using the following formula:

> Proteose peptone : 10 gm NaCl : 5gm Phenol Red Solution : 4.5ml Distilled Water q.s. : 1000ml

Media was prepared by dissolving all the ingredients in distilled water. The media was sterilized by autoclaving at 121°C for 15 minutes.

Kanamycin.

PREPARATION OF CULTURES BY SERIAL DILUTION:

For the preparation of culture, nutrient broth was taken in a test tube and a loop full of bacterial/ fungal samples was added with the help of inoculating loop.

ISOLATION OF COLONY:

Six test tubes were taken and marked as 10⁻¹, 10⁻², 10⁻³, 10⁻⁴, 10⁻⁵. The tubes were filled with 9 ml of nutrient media. Tube one was inoculated with 1ml of culture. All the test tubes were inoculated from previous tubes subsequently. Serial dilution helps in easy isolation of single colony of bacteria. The serially diluted tube marked S. aureus, Bacillus cereus (Var. mycoides). Fungal strains 10⁻⁵ was used for the final evaluation. The results will be calculated by statistical method.

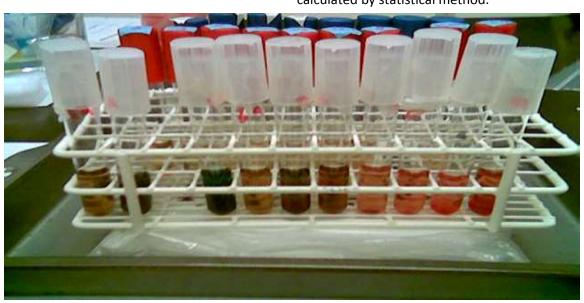


Figure 2: Zone of inhibition; antimicrobial activity of Z. armatum DC by serial dilution method.

RESULT AND DISSCUSSION:

The antimicrobial activities of many plant-derived in some details. compounds are well known and in particular, the antimicrobial activities of essential oils and their following result was found regarding the activity of the

constituents, which are mainly terpens, have been studied

From the above experiment and method, the seed oil of Z. armatum against test microbes:

Table 5: Antimicrobial acti	vity of seed oil of <i>Z. armatum</i>
-----------------------------	---------------------------------------

Sr. No.	Strains	% Activity
		(Zone of Inhibition)
1.	E. coli	75.4%
2.	S. aureus	71.2%
3.	Bacillus cereus var. mycoides	98.4%
4.	Candida albicans	97.9%
5.	Aspergillus niger	67.8%
6.	Cryptococcyus neoformans	85.0%

effective against Bacillus cereus var. mycoides, Candida albicans and Cryptococcus neoformans. The oil showed 4. Mukherjee PK, Dixit VK. Quality control of herbal drugs. good activity against S. aureus, E. coli and A. niger.

CONCLUSION:

armatum DC essential oil possess strong antimicrobial agent. The oil was found especially effective against E. coli, 7. Candida albicans, Bacillus cereus var. mycoides, Cryptococcus neoformans. Thus from the study and results it is concluded that plant Z. armatum has a very good scope in developing herbal antimicrobials with varied degree of activities.

REFERENCES:

- 1. William E.C., Trease and Evans, Pharmacognosy, 9. Cortez, D.A.G., Young, M.C.M., Martson, A., Wolfender, Fifteenth edition, Elsevier Ltd China, 2002, 134-135.
- **2.** Berry JP, Mecferren MA, Rodriguez Ε, Zoopharmacognosy: A biorational strategy phytochemical prospecting. In: Gustine DL, Flores H. (eds.) Phytochemicals and health, ASPP, Rockwville, 11. Pelczar MJ, Chan ECS, Krieg NR (1993). Microbilogy: 1995; 165-178.

- From the study it was found that the oil was highly 3. http://nmpb.nic.in (National Medicinal Plants Board, GoI website).
 - First edition Business horizons.2002; 427.
 - 5. Botham P.A., Acute systemic toxicity. ILAR Journal. 2002(43): S27-S29.
 - It has been reported that the Zanthoxylum 6. Stockwell, C. (1988). Nature's Pharmacy. Century Hutchinson Ltd., London, United Kingdom.
 - Sun, H. D., S. X. Qiu, L. Z. Lin, Z. Y. Wang, Z. W. Lin, T. Pengsuparp, J. M. Pezzuto, H. H. Fong, G. A. Cordell, and N. R.Farnsworth.(1996). Nigranoic acid, a triterpenoid from Schisandra sphaerandra that inhibits HIV-1 reverse transcriptase. J. Nat. Prod. 59:525-527.
 - 8. Pezzuto, H. H. Fong, G. A. Cordell, and N. R. Farnsworth (1996). Nigranoic acid, a triterpenoid from Schisandra sphaerandra that inhibits HIV-1 reverse transcriptase. J. Nat. Prod. 59:525-527.
 - J.L. and Hostettmann, K. (1998). Phytochemistry, 47(7), 1367.
 - for 10. Indian Pharmacopoeia, 2007.Vol ١, Indian Pharmacopoeia Commission, 2008, p.2368.
 - Concepts and Applications, McGraw and Hill, Newyork. p.578-579.