A NOVEL MERCURIMETRIC TITRATION ASSAY OF METFORMIN HYDROCHLORIDE USING MERCURY (II) THIOCYANATE–IRON (III) NITRATE INDICATOR SYSTEM

S. R. Labhade¹, H. S. Labhade², V. B. Kadam³ and V. B. Gaikwad⁴

¹Department of Chemistry, K.R.T. Arts, B.H. Commerce and A.M. Science (K.T.H.M.) College, Nashik- 422 002, Savitribai Phule Pune University, (M.S.) India
²P.G. Department of Chemistry, H.P.T. Arts, R.Y.K. Science College, Nashik- 422 002

Article Info: Received 28 January 2019; Accepted 24 February 2019
Disclosure statement: The authors have no conflicts of interest.

ABSTRACT
A simple, rapid, reliable and novel titration procedure for the mercurimetric assay of metformin hydrochloride (MHCl) based on measurement of the chloride content of its hydrochloride salt is described. In this experiment, initially a synthetic mercury(II) thiocyanate [Hg(SCN)₂] indicator was prepared by titrating mercury(II) nitrate [Hg(NO₃)₂] against potassium thiocyanate (KSCN) in the 1:2 stoichiometric ratio using ferric nitrate [Fe(NO₃)₃]. After addition of a known amount of Hg(NO₃)₂ to the indicator, the solution was further titrated against the aqueous solution of MHCl until the original red color reappeared. The concentration of chloride present in the volume (of MHCl) utilized for the reaction was found to be reacting in the 2:1 stoichiometric ratio with the Hg(NO₃)₂ taken in the second titration. The statistical treatment of the experimental data obtained by determining MHCl in the concentration range 0.8281 to 8.281 g/lit, indicates that the procedure is precise and accurate. The procedure was further applied for the analysis of MHCl in tablet formulations. The average recovery and accuracy were found to be in agreement with claimed by the manufacturer. The common excipients used in tablet formulations did not interfere in the determination of MHCl by this procedure as observed by the recovery experiment using standard addition method. The chemistry involved in titration, the action of an indicator at the end point and the factors that affecting the reaction stoichiometry are discussed.

Keywords: Chloride assay, Mercurimetric titration, Mercury (II) nitrate, Mercury(II) thiocyanate-iron(III) nitrate indicator system, Metformin hydrochloride, Metformin hydrochloride tablets.

INTRODUCTION
Argentometric¹-³ and mercurimetric⁴,⁵ determination of chloride in the hydrochloride salt of the drug are the common practice to find the concentration of the drugs. The essence of the present study of the determination of MHCl is also based on the quantitation of the chloride in the drug hydrochloride. The traditional spectrophotometric methods⁶-⁹ for determination of chloride are based on replacement of the thiocyanate ions in an undissociated Hg(SCN)₂ and measurement of the absorbance of the red iron(III)-thiocyanate complex. The ability of iron(III) to form thiocyanate complexes of different composition¹⁰, therefore these methods⁶-⁹ reflect non-linearity in the Beer’s law at higher concentration of the chloride.

The well known and commonly used titrimetric methods for determination of chloride includes
Mohr method11 in which the neutral solution of chloride is directly titrated against silver nitrate (AgNO\textsubscript{3}) using potassium chromate indicator. The anions like phosphate, arsenate, chromate, sulfide, and oxalates are showing the interference in the determination of chloride in neutral solution10. So, in Volhard procedure11 initially, the precipitation reaction of chloride with known and excess of AgNO\textsubscript{3} is carried out in dilute nitric acid and the residual AgNO\textsubscript{3} is estimated by back titration using thiocyanate solution. The co-precipitation of thiocyanate ions over silver chloride (AgCl) precipitate is the major problem associated Volhard’s method, which can be little bit eliminated by coagulating the AgCl precipitate with the nitrobenzene. Fajans method10-11 of the determination of chloride using AgNO\textsubscript{3} utilizes fluorescein and dichlorofluorescein as the adsorption indicator for determination of chloride in neutral and in acidic medium respectively. The extent of the adsorption of the indicator on the surface of the AgCl precipitate is related to the experimental conditions. In turbidimetric titration12-13 a solution of AgNO\textsubscript{3} was added into chloride solution and turbidity of the AgCl suspension is measured for determination of chloride. The refractive index difference and particle dimension of the AgCl are changing continuously during the course of titration; as a result, it does not produce an appropriate end point in the turbidimetric titration curve.

The mercurimetric determination of the chloride involves the direct titration against Hg(NO\textsubscript{3})\textsubscript{2} using diphenylcarbazone (DPC) indicator14. Although DPC is a suitable indicator for this titration but the mixture of DPC with bromothymol blue gives better end point, which was demonstrated by Clarke15 and applied for the determination of chloride in plant materials16. But the detection of the exact end point in this titration is a difficult task without precise adjustment of the pH (3.2–3.3). Finally, all these titrimetric methods mentioned above are associated with some kind of difficulty in determination of chloride. However, titrimetry is the most common, convenient and favorite tool in all analytical laboratories due to its inherent reproducibility, accuracy and low costing absolute method of analysis.

Metformin is used to lower blood glucose in patients with non-insulin dependent diabetes mellitus17. It is orally administered drug in the form of its hydrochloride salt (Fig.1) having the molecular formula (C\textsubscript{4}H\textsubscript{11}N\textsubscript{5}HCl) and the molecular weight 165.62 g/mol.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{metformin_struct.png}
\caption{Chemical structure of the metformin hydrochloride}
\end{figure}

Several methods have been proposed in the literature for quantification of MHCl including titration with perchloric acid18, conductometric determination using copper sulfate19 and silver nitrate20, a potentiometric assay with PVC membrane sensors21-22, and photofluorimetric23 evaluation by using chrysenequinone and 1-naphthol. In addition, high performance liquid chromatography24, reversed phase-liquid chromatography25, liquid chromatography-mass spectrometry26, tandem mass spectrometry27-28, gas chromatography29, capillary electrophoresis30 and spectrophotometric31-32 analysis. Most of these methods are time-consuming and required an expensive instrumentation.

In the previous study, we have utilized the Hg(NO\textsubscript{3})\textsubscript{2} reagent and Hg(SCN)\textsubscript{2}-Fe(NO\textsubscript{3})\textsubscript{3} indicator system for the titrimetric determination of ranitidine hydrochloride33 as well as for determination of the chloride concentration in the water of green coconuts34. However, there is no report on the titrimetric assay of the MHCl using Hg(NO\textsubscript{3})\textsubscript{2} reagent and Hg(SCN)\textsubscript{2}-Fe(NO\textsubscript{3})\textsubscript{3} indicator system. So, in the present study, an attempt is made to report the original approach that allows a simple and rapid titrimetric assay of MHCl. In this procedure, initially a synthetic Hg(SCN)\textsubscript{2} indicator was prepared by titrating Hg(NO\textsubscript{3})\textsubscript{2} against KSCN up to the red color end point using Fe(NO\textsubscript{3})\textsubscript{3}. Then a known amount of the Hg(NO\textsubscript{3})\textsubscript{2} was added to the indicator solution and further titrated against an aqueous solution of MHCl.
until the original red color reappeared. The concentration of MHCl present in the volume (of MHCl solution) utilized for titration was found to be reacting in the 2:1 stoichiometric ratio with the known amount Hg(NO₃)₂ taken in the second step of the titration.

Experimental

Chemicals and Reagents

All the chemicals used were of the analytical grade. Double distilled water was used to prepare all the solutions. A standard 0.05M of KSCN, MHCl and sodium chloride (NaCl) solutions were prepared in water. A 0.05M Hg(NO₃)₂ solution was prepared in 0.5M nitric acid. A 0.2M of Fe(NO₃)₃ solution was prepared in 3.0M perchloric acid (HClO₄). The molarity of Hg(NO₃)₂ was adjusted exactly equal to 0.05M by standardizing against standard 0.05M KSCN using Fe(NO₃)₃ indicator. The metformin-containing tablets, Metfor, Glycomet, Diabetrol, Reclimate, Gemer 1 and Actizide-M were purchased from commercial sources and subjected to analysis.

Assay Procedure

Step-I: Preparation of indicator

A 5.0ml of 0.05M of Hg(NO₃)₂ was transferred into a 250-ml titration flask containing 15 ml of distilled water. In this solution, 10 ml of 0.2M of Fe(NO₃)₃ in 3.0M HClO₄ was added. The content in the flask was titrated against 0.05M KSCN placed in a 10-ml micro burette. This process was performed by intermittent till a faint red color developed. This termed here as the first end point of the titration. The burette reading (V_KSCN) was recorded. The exact molarity [M_Hg(NO₃)₂] of Hg(NO₃)₂ was calculated using following Eq. (1):

\[
M_{Hg(NO₃)₂} = \left(\frac{M_{KSCN} \times V_{KSCN}}{V_{Hg(NO₃)₂} \times N} \right) \quad \text{... Eq. (1)}
\]

In Eq. (1), M_KSCN is the molarity of KSCN, V_Hg(NO₃)₂ is the volume of Hg(NO₃)₂ taken for titration, N=2) is the number of moles of KSCN reacting with one mole of Hg(NO₃)₂. At the end point, this solution consists little amount of red colored monothiocynatoiron(III) nitrate, [Fe(SCN)](NO₃)₂ and Hg(SCN)₂ and Fe(NO₃)₃. This solution was used as an indicator in the second step of the titration.

Step-II: Determination of MHCl

After preparation of the indicator solution, exactly 5.0ml of standard 0.05M Hg(NO₃)₂ was added to the flask. This addition disappears the red color of the solution. The content in the titration flask was titrated against 0.05M MHCl solution slowly from a 10-ml micro burette until the original red color reappeared. This termed here as the second end point of the titration. At this end point, the burette reading (V_MHCl) of the MHCl solution was recorded. The molarity (M_MHCl) of the MHCl solution was calculated as shown below:

\[
M_{MHCl} = \left(\frac{M_{Hg(NO₃)₂} \times V_{Hg(NO₃)₂} \times N}{V_{MHCl}} \right) \quad \text{... Eq. (2)}
\]

In Eq. (2), V_Hg(NO₃)₂ is the volume of Hg(NO₃)₂ was taken in the second step of titration.

The strength of the MHCl in g/lit (viz. mg/ml) was calculated by multiplying molarity (M_MHCl) with the molecular weight (165.62 g/mol) of the MHCl. The amount of MHCl (C_MHCl) in 100 ml solution was calculated by using following Eq. (3).

\[
C_{MHCl} = M_{MHCl} \times MW \times 100 \quad \text{... Eq. (3)}
\]

Quantification of MHCl in tablets

A single tablet containing MHCl was weighed and ground into a fine powder. An accurate amount of 0.200 to 0.400 g of MHCl powder was dissolved in water and diluted to 100 ml in the calibrated flask. The solution was shaken thoroughly and filtered using a Whatman No. 41 filter paper. This filtrate was filled in the 10-ml micro burette and assayed as per the above procedure. The molarity, strength, and amount of MHCl in 100 ml solution were calculated as mentioned above.

Assay by standard addition method

After preparation of indicator solution by step-I, exactly 5.0ml of standard 0.05M Hg(NO₃)₂ was added in titration flask. Initially, a known amount of (4.0 ml, 6.0 ml or 8.0 ml of 0.05M) of MHCl was added as a standard and then content was further titrated by adding MHCl sample solution from 10-ml micro burette till original red color was reappeared. The burette reading (V_SAM) of the MHCl sample solution was recorded. The molarity (M_SAM) of the MHCl
solution in the sample solution was calculated using following Eq.(4):

\[
M_{\text{SAM}} = \left(\frac{M_{\text{Hg(NO}_3)_2} \times V_{\text{Hg(NO}_3)_2} \times N} {M_{\text{MHCl}} \times V_{\text{MHCl}}} \right) \quad \text{... Eq.(4)}
\]

In Eq. (4), \(M_{\text{MHCl}}\) and \(V_{\text{MHCl}}\) are molarity and volume of 0.05M MHCl respectively which was added as MHCl standard. Furthermore, the strength and the amount of MHCl in 100 ml sample solution were calculated as described above.

Results and Discussion

The majority of drug compounds have been assayed by determining the chloride content in their hydrochloride salt using silver salts\(^1-3\) and mercury salts\(^4-5,33\). In the earlier study, we utilized 1:1 mercuric–thiocyanate reagent for direct determination of chloride\(^35\) and mercuric-thiocyanate absorbing system for spectrophotometric determination of chloride\(^36\). The proposed procedure of the assay of the MHCl is also based on the determination of chloride content in the hydrochloride salts of the drug. In an aqueous medium, MHCl ionizes by giving the protonated drug moiety and the chloride ion facilitating the mercurimetric titration of the MHCl via measurement of the chloride concentration.

\[
\text{MHCl} \rightarrow \text{MH}^+ + \text{Cl}^-
\]

Stability and reactivity of the complexes

Practically, during the formation of complex, there is a competition between two or more ligands for the metal ion in an aqueous solution. The complex formation reactions are the ligand replacement process. The ligands in the coordination sheath of the metal ion are replaced step wisely by the other ligands having strong combining capacity with the metal ion\(^37\). The value of formation constant or stability constant (log \(K\)) determines the stability of the complex.

The cumulative formation constant (CFC) of the chloride\(^37-38\) complexes of mercury(II) [Hg(II)] are reported as \(\log K_1=6.74\), \(\log K_2=13.22\), \(\log K_3=14.07\) and \(\log K_4=15.07\) indicates the formation of \([\text{Hg(Cl)}]^+\), \([\text{Hg(Cl)}_2]^{-}\), \([\text{Hg(Cl)}_3]^{-1}\) and \([\text{Hg(Cl)}_4]^{-2}\) complexes respectively. The values of \(\log K_2\), \(\log K_3\) and \(\log K_4\) of these complexes does not differs widely; consequently, with the addition of the chloride solution into the Hg(II) solution, there is a possibility of the formation of all complexes simultaneously. Consequently, in the direct titration of chloride against Hg(II), the correct reaction stoichiometry becomes indistinguishable.

The CFC of thiocyanate\(^37-38\) complexes of the Hg(II) are reported as \(\log K_{1}=17.47\) and \(\log K_{2}=21.23\) respectively this indicates the formation of \([\text{Hg(SCN)}]_2^+\) and \([\text{Hg(SCN)}]_3^{-1}\) complexes only. Since no report\(^37-38\) on the values of \(\log K_1\) and \(\log K_3\) designates no possibility of formation of the \([\text{Hg(SCN)}]^+\) and \([\text{Hg(SCN)}]^{-1}\) complexes. In addition, the value of \(\log K_2\) and \(\log K_4\) of the thiocyanate complexes of Hg(II) differs widely. This makes practicable for determination of Hg(II) using thiocyanate titrant\(^11\) up to \([\text{Hg(SCN)}]_2^+\) reaction product by using Fe(NO\(_3\)_3 indicator. The same theme of determination of Hg(II) is applied here for preparation of the indicator solution (step-I of the procedure).

The complexometric reaction study\(^37-38\) illustrates that both the chloride and thiocyanate ions form sufficiently stable complexes with Hg(II), but the reactivity of chloride towards Hg(II) is quite more; since it displaces thiocyanate ion from the Hg(II) and makes it feasible to determine chloride\(^6-9\) as well as the detection of the end point of the titration in the proposed procedure. In the present investigation, the reaction of the chloride with the Hg(II) was controlled in the 1:1 stoichiometric ratio by making the reaction competitive for the chloride and thiocyanate ions towards Hg(II) ion. Probably this is possible only by adding chloride solution into the solution of Hg(II) containing thiocyanate ions.

Chemistry of the indicator

The mercurimetric determination of the chloride concentration is the well-known examples of the complexometric titration\(^15-16\). At acidic pH, the reaction of chloride against Hg(II) is taking place in the 2:1 stoichiometric ratio, that forms the basis of many titrimetric methods employed in the drug analysis\(^4-5\) as well as the analysis of chloride in the plant materials\(^16\). The present titration of MHCl determination also involved the reaction of chloride

with a known concentration of Hg(NO\(_3\))\(_2\) using Hg(SCN)\(_2\)-Fe(NO\(_3\))\(_3\) indicator system. This Hg(SCN)\(_2\) indicator was prepared by titrating Hg(NO\(_3\))\(_2\) against KSCN in the 1:2 stoichiometric ratio using Fe(NO\(_3\))\(_3\).

\[
\text{Hg(NO}_3\text{)}_2 + 2\text{KSCN} \rightarrow \text{Hg(SCN)}_2 + 2\text{KNO}_3
\]

After equivalence point of the titration, a trace concentration of KSCN reacts with Fe(NO\(_3\))\(_3\) gives the red colored [Fe(SCN)(NO\(_3\))\(_2\)] in the solution at the end point.

KSCN + Fe(NO\(_3\))\(_3\) → [Fe(SCN)(NO\(_3\))\(_2\)] + KNO\(_3\)

Thus, the indicator solution consists of [Hg(SCN)\(_2\)], Fe(NO\(_3\))\(_2\) with a little amount of [Fe(SCN)(NO\(_3\))\(_2\)]. All the reaction products are soluble because of the highly acidic pH (~0.80 to 0.85) created by the HClO\(_4\) and HNO\(_3\) which were employed in the preparation of Fe(NO\(_3\))\(_3\) and Hg(NO\(_3\))\(_2\) reagents respectively.

Chemistry of titration reaction

The second step of the procedure describes the mercurimetric determination of chloride or MHCl. When an indicator was prepared by using a 5.0ml of 0.05M Hg(NO\(_3\))\(_2\) and exactly same amount of Hg(NO\(_3\))\(_2\) (viz. 5.0 ml of 0.05M) was taken for the second step of the titration; then Hg(NO\(_3\))\(_2\) reacts with the Hg(SCN)\(_2\) by forming [Hg(SCN)(NO\(_3\))] as below:

\[
\text{Hg(NO}_3\text{)}_2 + \text{Hg(SCN)}_2 \rightarrow 2\text{[Hg(SCN)(NO}_3\text{)]}
\]

Furthermore, the addition of Hg(NO\(_3\))\(_2\) also vanishes the red color of the indicator solution because of the conversion of red colored [Fe(SCN)(NO\(_3\))\(_2\)] into the colorless Hg(SCN)\(_2\).

\[
\text{Hg(NO}_3\text{)}_2 + 2\text{[Fe(SCN)(NO}_3\text{)]} \rightarrow \text{Hg(SCN)}_2 + \text{Fe(NO}_3\text{)}_3
\]

Thus, before the titration against the MHCl, the [Hg(SCN)(NO\(_3\))] and Hg(SCN)\(_2\) with Fe(NO\(_3\))\(_3\) are the reacting species present in the titration flask. When this solution titrated against the MHCl solution, then chloride ions (of the MHCl) are reacting initially with the [Hg(SCN)(NO\(_3\))] through replacing the nitrate ions.

\[
\text{[Hg(SCN)(NO}_3\text{)]} + \text{MHCl} \rightarrow \text{[Hg(SCN)(Cl)]} + \text{MHNO}_3
\]

As long as, the titrimetric reaction does not reach to 1:1 stoichiometry, the initially linked thiocyanate ions [to Hg(II)] does not allow for the chloride ions to increase coordination number of Hg(II) greater than two. Thus up to the equivalence point, both the thiocyanate and the chloride ions have equal reactivity towards Hg(II), which makes this reaction competitive for both the ions. After completion of the reaction in the 1:1 stoichiometric ratio, the extra chloride ions (of the MHCl) displaces the thiocyanate ions from the Hg(SCN)\(_2\) and it regenerates the red colored [Fe(SCN)(NO\(_3\))\(_2\)] on reaction with Fe(NO\(_3\))\(_3\) at the end point of the titration.

\[
\text{Hg(SCN)}_2 + \text{MHCl} + \text{Fe(NO}_3\text{)}_3 \rightarrow \text{[Hg(SCN)(Cl)]} + \text{[Fe(SCN)(NO}_3\text{)]}_2 + \text{MHNO}_3
\]

The identical red color intensity at first and the second end point of the titrations designates equal concentration of [Fe(SCN)(NO\(_3\))\(_2\)], which proves that the titration is free from the titration errors.

Stoichiometry of titration

When the exactly same amount of Hg(NO\(_3\))\(_2\) was employed in the preparation of the indicator solution (step-I of the titration) as well as for the titration of the MHCl (step-II of the titration), then a small amount of Hg(SCN)\(_2\) was generated in the indicator solution. The concentration of this Hg(SCN)\(_2\) presides over the amount of the [Fe(SCN)(NO\(_3\))\(_2\)] that was formed in the first step of the titration. With reference to above discussion, the proposed procedure of the mercurimetric determination of the MHCl involves the reaction of chloride ions (of the MHCl) against the [Hg(SCN)(NO\(_3\))] in the presence of Hg(SCN)\(_2\) and Fe(NO\(_3\))\(_3\). It was observed that one mole of the MHCl was reacting with the one mole of the [Hg(SCN)(NO\(_3\))] or two moles of the MHCl were reacting with one mole of the Hg(NO\(_3\))\(_2\), that was taken in the second step of the titration.

The reaction stoichiometry viz. the number (N) of moles of MHCl reacting with one mole of Hg(NO\(_3\))\(_2\) was first studied by determining the MHCl in the range 0.8281 to 8.281 g/lit (0.005M to 0.05M) using the standard MHCl solutions. The value of N was calculated by using following Eq. (5):

\[
N = \frac{(\text{M}_{\text{MHCl}} \times \text{V}_{\text{MHCl}})}{(\text{M}_{\text{Hg(NO}_3\text{)}_2} \times \text{V}_{\text{Hg(NO}_3\text{)}_2})} \quad \text{Eq. (5)}
\]
In Eq. (5), M_{MHCl} and V_{MHCl} are the molarity and the burette reading of the MHCl solution. The value of N found to be correct only when the concentration of the Hg(NO$_3$)$_2$ employed in the second titration was smaller or equal to that was taken for preparation of indicator solution (table 1 and 2). At this experimental condition along with the $[\text{Hg(SCN)(NO}_3\text{)}_2]$, the Hg(SCN)$_2$ was present in the in the titration flask for detection of the end point of the titration. Consequently in presence of the Hg(SCN)$_2$ the reaction stoichiometry was found to be correct. When an indicator was prepared by using a 5.0ml of 0.05M Hg(NO$_3$)$_2$ and the lower amount (1.0, 2.0, 3.0 or 4.0ml) of Hg(NO$_3$)$_2$ was employed for the titration (step-II), at this situation excess amount of Hg(SCN)$_2$ in the indicator solution gives the sharper end point of the titration.

When larger amount (more than 5.0ml) of Hg(NO$_3$)$_2$ was used in the second step of the titration, then the formation of Hg(SCN)$_2$ is not possible. At this condition along with the $[\text{Hg(SCN)(NO}_3\text{)}_2]$ and the free Hg(II) ions (not lined with thiocyanate) were present in the titration flask. These free Hg(II) ions are reacting with chloride by giving chloro-complexes of coordination number greater than two. Consequently, the value of N was observed to be increased (table 1 and 2). Under this condition, the development of the red color at the end point of the titration can be predicted because of the following reaction:

$$[\text{Hg(SCN)(Cl)}] + \text{MHCl} + \text{Fe(NO}_3\text{)}_3 \rightarrow \text{Hg(Cl)}_2 + [\text{Fe(SCN)(NO}_3\text{)}_2] + \text{NaNO}_3$$

Table 1: Results obtained in determination of reaction stoichiometry by varying the concentration of the Hg(NO$_3$)$_2$ for the titration

<table>
<thead>
<tr>
<th>Composition of the indicator</th>
<th>Volume of 0.05M Hg(NO$_3$)$_2$ taken for titration (ml)</th>
<th>Volume of 0.05M MHCl required for titration (ml)</th>
<th>[MHCl: Hg(NO$_3$)$_2$] Stoichiometry found</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount of 0.2 M Fe(NO$_3$)$_3$ (ml)</td>
<td>Amount of 0.05M Hg(NO$_3$)$_2$ (ml)</td>
<td>Amount of 0.05M KSCN (ml)</td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>5.0</td>
<td>10.0</td>
<td>2.0</td>
</tr>
<tr>
<td>10.0</td>
<td>5.0</td>
<td>10.0</td>
<td>4.0</td>
</tr>
<tr>
<td>10.0</td>
<td>5.0</td>
<td>10.0</td>
<td>5.0</td>
</tr>
<tr>
<td>10.0</td>
<td>5.0</td>
<td>10.0</td>
<td>6.0</td>
</tr>
<tr>
<td>10.0</td>
<td>5.0</td>
<td>10.0</td>
<td>8.0</td>
</tr>
<tr>
<td>10.0</td>
<td>5.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
</tbody>
</table>

Table 2: Results obtained in determination of reaction stoichiometry by varying the concentration of the Hg(SCN)$_2$ in the indicator

<table>
<thead>
<tr>
<th>Composition of the indicator</th>
<th>Volume of 0.05M Hg(NO$_3$)$_2$ taken for titration (ml)</th>
<th>Volume of 0.05M MHCl required for titration (ml)</th>
<th>[MHCl: Hg(NO$_3$)$_2$] Stoichiometry found</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount of 0.2 M Fe(NO$_3$)$_3$ (ml)</td>
<td>Amount of 0.05M Hg(NO$_3$)$_2$ (ml)</td>
<td>Amount of 0.05M KSCN (ml)</td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>1.0</td>
<td>2.0</td>
<td>5.0</td>
</tr>
<tr>
<td>10.0</td>
<td>2.0</td>
<td>4.0</td>
<td>5.0</td>
</tr>
<tr>
<td>10.0</td>
<td>3.0</td>
<td>6.0</td>
<td>5.0</td>
</tr>
<tr>
<td>10.0</td>
<td>4.0</td>
<td>8.0</td>
<td>5.0</td>
</tr>
<tr>
<td>10.0</td>
<td>5.0</td>
<td>10.0</td>
<td>5.0</td>
</tr>
<tr>
<td>10.0</td>
<td>6.0</td>
<td>12.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Accuracy and precision of the experiment

In the aqueous solution, MHCl and NaCl ionize in a similar way. Therefore, the results obtained in the analysis of MHCl were simultaneously matched by analyzing standard NaCl. The five replicate measurements of the
determination of chloride and MHCl were carried out by using 0.005M, 0.01M, 0.025M and 0.05M standard NaCl as well as MHCl solutions respectively. The accuracy of the procedure in the determination of chloride and MHCl are presented in the form of relative errors. Similarly, the precision of the procedure in the determination of chloride and MHCl are expressed in terms of relative standard deviations. The results presented in Table 3 and Table 4, indicate that the proposed procedure is accurate and reproducible for determination of chloride and MHCl. As reaction stoichiometry was observed same in determination of chloride (in NaCl) as well as MHCl indicates that the protonated drug moiety, MH⁺ had no effect on the complex formation reaction and the color intensity at the end point.

Table 3: Results obtained in the determination of the accuracy and precision of the procedure in determination of chloride in NaCl

<table>
<thead>
<tr>
<th>Volume of 0.05M Hg(NO₃)₂ taken for titration (ml)</th>
<th>Expected amount chloride require for reaction (mg)</th>
<th>Strength/molarity of chloride found* (M)</th>
<th>Amount of chloride found* (mg)</th>
<th>Absolute error (mg)</th>
<th>Relative error (%)</th>
<th>Deviation</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0ml</td>
<td>3.55</td>
<td>0.0500</td>
<td>3.551</td>
<td>0.004</td>
<td>0.10</td>
<td>0.001</td>
<td>0.166</td>
</tr>
<tr>
<td>2.0ml</td>
<td>7.10</td>
<td>0.0500</td>
<td>7.094</td>
<td>-0.031</td>
<td>-0.43</td>
<td>0.001</td>
<td>0.354</td>
</tr>
<tr>
<td>3.0ml</td>
<td>10.65</td>
<td>0.0500</td>
<td>10.643</td>
<td>-0.034</td>
<td>-0.32</td>
<td>0.001</td>
<td>0.274</td>
</tr>
<tr>
<td>4.0ml</td>
<td>14.20</td>
<td>0.0500</td>
<td>14.207</td>
<td>0.036</td>
<td>0.26</td>
<td>-0.001</td>
<td>0.300</td>
</tr>
<tr>
<td>5.0ml</td>
<td>17.75</td>
<td>0.0500</td>
<td>17.757</td>
<td>0.036</td>
<td>0.20</td>
<td>-0.001</td>
<td>0.361</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.19%</td>
<td></td>
<td>0.291</td>
</tr>
</tbody>
</table>

*Average value of the five determinations

Table 4: Results obtained in the determination of the accuracy and precision of the procedure in the determination of MHCl

<table>
<thead>
<tr>
<th>Volume of 0.05M Hg(NO₃)₂ taken for titration (ml)</th>
<th>Expected amount MHCl require for reaction (mg)</th>
<th>Strength/molarity of MHCl found* (M)</th>
<th>Amount of MHCl in found* (mg)</th>
<th>Absolute error (mg)</th>
<th>Relative error (%)</th>
<th>Deviation</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0ml</td>
<td>16.562</td>
<td>0.0500</td>
<td>16.563</td>
<td>0.007</td>
<td>0.04</td>
<td>0.000</td>
<td>0.057</td>
</tr>
<tr>
<td>2.0ml</td>
<td>33.124</td>
<td>0.0500</td>
<td>33.110</td>
<td>-0.068</td>
<td>-0.20</td>
<td>0.000</td>
<td>0.092</td>
</tr>
<tr>
<td>3.0ml</td>
<td>49.686</td>
<td>0.0500</td>
<td>49.720</td>
<td>0.172</td>
<td>0.35</td>
<td>-0.001</td>
<td>0.063</td>
</tr>
<tr>
<td>4.0ml</td>
<td>66.248</td>
<td>0.0500</td>
<td>66.183</td>
<td>-0.325</td>
<td>-0.49</td>
<td>-0.001</td>
<td>0.059</td>
</tr>
<tr>
<td>5.0ml</td>
<td>82.8105</td>
<td>0.0500</td>
<td>82.762</td>
<td>-0.245</td>
<td>-0.30</td>
<td>-0.001</td>
<td>0.059</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.60</td>
<td></td>
<td>0.066</td>
</tr>
</tbody>
</table>

*Average value of the five determinations

Application of the procedure

The MHCl in aqueous solution ionizes to give the protonated drug moiety and the chloride ion. The liberated chloride is being reacted in the 2:1 stoichiometric ratio with the Hg(NO₃)₂ or in the 1:1 stoichiometric ratio with the [Hg(SCN)(NO₃)]. Therefore, the procedure was found applicable for the quantitative determination of the MHCl through determination of the chloride content in its hydrochloride salts. The results of this analysis are present in table 5. The percent recovery in the analysis of the MHCl drug was found in the range 99.59 to 101.11 %, so the procedure is accurate.
Standard addition method
The accuracy of the proposed procedure (employed for the determination of MHCl) was further ascertained by using standard addition method. In this study, before the titration against sample solution of the MHCl, the known amount of pure MHCl was first added in the titration flask and the solution was further titrated against the sample solution of MHCl. The results of this analysis are presented in table 6. In the analysis of drug by the standard addition method, the percent recovery of the drug was also found nearly equal to 100% (table 6). Therefore, neither the end-point of the titration nor the molarity of sample MHCl was affected by the protonated drug moiety and the common tablet excipients.

Table 5: Results obtained in the quantitation determination of the MHCl in the tablet formulations by the proposed procedure

<table>
<thead>
<tr>
<th>Drug Formulation</th>
<th>Weight of the tablet (mg)</th>
<th>Sample weight taken for analysis (mg)</th>
<th>Molarity of the MHCl found (M)</th>
<th>Amount of MHCl found in the sample (mg)</th>
<th>Amount of the MHCl found in tablet (mg)</th>
<th>Recovery of MHCl found in analysis (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metform (500 mg MHCl)</td>
<td>542</td>
<td>406</td>
<td>0.02260</td>
<td>374.30</td>
<td>499.68</td>
<td>99.93</td>
</tr>
<tr>
<td></td>
<td>544</td>
<td>270</td>
<td>0.01515</td>
<td>250.91</td>
<td>505.53</td>
<td>101.11</td>
</tr>
<tr>
<td></td>
<td>538</td>
<td>266</td>
<td>0.01504</td>
<td>249.05</td>
<td>503.83</td>
<td>100.77</td>
</tr>
<tr>
<td>Glycomet (250 mg MHCl)</td>
<td>272</td>
<td>181</td>
<td>0.01013</td>
<td>167.77</td>
<td>252.12</td>
<td>100.85</td>
</tr>
<tr>
<td></td>
<td>267</td>
<td>267</td>
<td>0.01508</td>
<td>249.75</td>
<td>249.75</td>
<td>99.90</td>
</tr>
<tr>
<td></td>
<td>268</td>
<td>178</td>
<td>0.01011</td>
<td>167.44</td>
<td>252.11</td>
<td>100.84</td>
</tr>
<tr>
<td>Diabetrol (500 mg MHCl)+ Glibenclamide</td>
<td>551</td>
<td>370</td>
<td>0.02031</td>
<td>336.37</td>
<td>500.92</td>
<td>100.18</td>
</tr>
<tr>
<td></td>
<td>555</td>
<td>352</td>
<td>0.01923</td>
<td>318.48</td>
<td>502.16</td>
<td>100.43</td>
</tr>
<tr>
<td></td>
<td>559</td>
<td>274</td>
<td>0.01482</td>
<td>245.45</td>
<td>500.75</td>
<td>100.15</td>
</tr>
<tr>
<td>Glucofod (500 mg MHCl)+ Glibenclamide</td>
<td>578</td>
<td>399</td>
<td>0.02084</td>
<td>345.15</td>
<td>499.99</td>
<td>99.99</td>
</tr>
<tr>
<td></td>
<td>584</td>
<td>356</td>
<td>0.01852</td>
<td>306.72</td>
<td>503.16</td>
<td>100.63</td>
</tr>
<tr>
<td></td>
<td>588</td>
<td>256</td>
<td>0.01315</td>
<td>217.79</td>
<td>500.23</td>
<td>100.05</td>
</tr>
<tr>
<td>Gemer 1 (500 mg MHCl)+ Glimepiride</td>
<td>568</td>
<td>380</td>
<td>0.02021</td>
<td>334.58</td>
<td>500.12</td>
<td>100.02</td>
</tr>
<tr>
<td></td>
<td>564</td>
<td>338</td>
<td>0.01818</td>
<td>301.09</td>
<td>502.41</td>
<td>100.48</td>
</tr>
<tr>
<td></td>
<td>568</td>
<td>266</td>
<td>0.01418</td>
<td>234.92</td>
<td>501.63</td>
<td>100.33</td>
</tr>
<tr>
<td>Glynase-MF (500 mg MHCl)+ Glipizide</td>
<td>558</td>
<td>358</td>
<td>0.01951</td>
<td>323.12</td>
<td>503.64</td>
<td>100.73</td>
</tr>
<tr>
<td></td>
<td>559</td>
<td>292</td>
<td>0.01571</td>
<td>260.13</td>
<td>497.98</td>
<td>99.59</td>
</tr>
<tr>
<td></td>
<td>552</td>
<td>270</td>
<td>0.01481</td>
<td>245.36</td>
<td>501.62</td>
<td>100.32</td>
</tr>
</tbody>
</table>

Table 6: Results obtained in the quantitation determination of the MHCl in the tablet formulations by proposed procedure using standard addition method

<table>
<thead>
<tr>
<th>Drug Formulation</th>
<th>Volume of the 0.05M MHCl was added as standard (ml)</th>
<th>Weight of the tablet (mg)</th>
<th>Sample weight taken for analysis (mg)</th>
<th>Molarity of the MHCl found (M)</th>
<th>Amount of MHCl found in the sample (mg)</th>
<th>Amount of the MHCl found in tablet (mg)</th>
<th>Recovery of MHCl found in analysis (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metform (500 mg MHCl)</td>
<td>4.0</td>
<td>542</td>
<td>406</td>
<td>0.02273</td>
<td>376.45</td>
<td>502.55</td>
<td>100.51</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>544</td>
<td>270</td>
<td>0.01504</td>
<td>249.92</td>
<td>501.87</td>
<td>100.37</td>
</tr>
<tr>
<td></td>
<td>8.0</td>
<td>538</td>
<td>266</td>
<td>0.01493</td>
<td>247.19</td>
<td>499.96</td>
<td>99.99</td>
</tr>
<tr>
<td>Glycomet (250 mg MHCl)</td>
<td>4.0</td>
<td>272</td>
<td>181</td>
<td>0.01014</td>
<td>167.85</td>
<td>252.25</td>
<td>100.90</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>267</td>
<td>267</td>
<td>0.01503</td>
<td>249.75</td>
<td>249.05</td>
<td>99.62</td>
</tr>
<tr>
<td></td>
<td>8.0</td>
<td>268</td>
<td>178</td>
<td>0.01010</td>
<td>167.29</td>
<td>251.87</td>
<td>100.74</td>
</tr>
<tr>
<td>Diabetrol (500 mg MHCl)+ Glibenclamide</td>
<td>4.0</td>
<td>551</td>
<td>370</td>
<td>0.02027</td>
<td>335.72</td>
<td>499.94</td>
<td>99.98</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>555</td>
<td>352</td>
<td>0.01923</td>
<td>318.48</td>
<td>502.16</td>
<td>100.43</td>
</tr>
<tr>
<td></td>
<td>8.0</td>
<td>559</td>
<td>274</td>
<td>0.01493</td>
<td>247.27</td>
<td>504.46</td>
<td>100.89</td>
</tr>
</tbody>
</table>
Conclusion

In conclusion, the proposed procedure of determination of the MHCl is found to be quite simple, inexpensive and reliable in comparison to the above-mentioned methods requiring the sophisticated instrumentation. The results obtained in the analysis of the MHCl are found to be in agreement with those obtained in determination chloride in standard NaCl solutions; this demonstrates that neither the protonated drug moiety nor the tablet excipients interfere in the determination of MHCl by this procedure. The percent recovery values indicate the procedure is excellent for the mercurimetric determination MHCl in acidic solution without precise adjustment of the PH. With the proposed procedure the determination of MHCl is possible in the homogenous solution, consequently, it is free from the titration errors those are commonly encountered by co-precipitation in the argentometric assay of MHCl. Titrimetry is the absolute method of analysis consequently the proposed procedure is suitable for routine analysis of MHCl in pure form and in tablet formulations for controlling the quality of the product. Furthermore, given procedure may apply for determination of other drugs (existing in their hydrochloride form) as well as for assay of chloride concentration in different aqueous samples.

Acknowledgements

Authors are grateful to the Managing Committee of the Maratha Vidya Prasarak (MVP) Samaj, Nashik for providing the necessary infrastructure and instrumentations. This article is dedicated to all the army personnel who laid down their life till the last minute fighting against antisocial elements at the border.

References