INVESTIGATION OF IN VITRO ANTHELMINTIC ACTIVITY OF FICUS ELASTICA LEAVES

Ramchandra Gupta, Prabhakar Sharma, Ashish Garg, Ajay Shukla, Alok Pal Jain

1Department of Pharmacognosy, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy) Jabalpur, 483001
2Department of Pharmachemistry, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy) Jabalpur, 483001
3Department of Pharmaceutical, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy) Jabalpur, 483001

ABSTRACT

The World Health Organization estimates that a staggering two billion people harbor parasitic worm infections. The increasing of anthelmintic drug resistance and the high cost of anthelmintic drugs led to the development of herbal medicine as an alternative source of anthelmintic. In the current study, in-vitro experiments were conducted to determine the possible anthelmintic effects of Ficus elastic (FE) Linn which are traditionally used for treatment of various diseases. The main aim of this study is to investigate the anthelmintic activity of Ficus elastic using earth-worms (Pheritima posthuma). Intestinal worms affect a host of individuals resulting in malnutrition, intellectual retardation, stunted growth and cognitive deficits. The leaves of the plant were taken for anthelmintic activity against Indian earthworm Pheritima posthuma. The Methanol and Ethanol extract of the Ficus elastic were evaluated for their anthelmintic activity against metronidazole (10mg/ml) as a reference and distilled water as a control group and the results were expressed in terms of time for paralysis and time for death of worms.

KEY WORDS: - Ficus elastica Linn. anthelmintic activity, metronidazole, Pheritima posthuma, Death time, Paralysis time.

INTRODUCTION:

Drugs which acts locally to expel the worms from the gastro-intestinal tract or systemically to eradicate adult helminths or developmental stages that invade organs and tissues known as Anthelmintics drugs and all these medicines are widely used to destroy parasites that live in the body of human and other animal. As per World Health Organization (WHO) statistics and reports there are more than two billion people harbor parasitic worm infections. In areas of high prevalence, simultaneous infection with more than one type of helminthes is common. The worm infestations are also a major cause for concern in veterinary medicine, affecting domestic pets form animals. Inhabitants of tropical or subtropical, low income countries are most at risk; children often become infected with one or more species almost as soon as they are born and may remain infected throughout their lives. The helmintiasis is a worm infestation and highly prevalent disease particularly in third world countries due to poverty, illiteracy, lack of adequate sanitary facilities and pure water supply. The main problem with anthelmintics is that many of these drugs have been used for a long time and this over time parasites have developed drug resistance. Most of the existing anthelmintics drug e.g. levamisole produce a side effects such as abdominal pain, loss of appetite, vomiting, nausea, diarrhea and headache. Much importance has been replaced by phytomedicine or Phytoconstituents for now day due to their outstanding advantages than synthetic drugs. These advantages are least side effects, low cost and least drug resistance. Thus phytomedicine has become a good alternative to synthetic anthelmintics.

Ficus elastic Linn. (Moraceae) is a widely spread evergreen tree up to 30-40 metres (98–130 ft) height with a stout trunk up to 2 meters (6.6 ft) diameter.. The leaves of F. elastic are 10-35 cm (3.9–14 inch) long and 5–15 centimeters (2.0–5.9 inch) broad, with broad shiny oval, smooth edges and blunt pointed tips. The leaves are thick and about a foot long with deep green colour. This plant is known locally as "India-rubber tree".

MATERIALS AND METHODS:

PLANT COLLECTION:

The leaves of Ficus elastic were collected from the herbal garden of GRKIST (Pharmacy), Jabalpur, District of Madhya Pradesh, India and identified and authenticated by Dr. Santram Lodhi (HOD) Pharmacognosy Dept. GRKIST (Pharmacy). The plants Leaves were cleaned well and dried under shed at room temperature for extraction.

PREPARATION OF PLANT EXTRACTS:

About 25 gm of dried leaves of Ficus elastic were weight and powdered by subjected to size reduction and passed through sieve no. 40. The crushed mass of leaves was then ready for extraction. Then leaves powder was extracted with Methanol and Ethanol by maceration at room temperature for 14 days with occasional shaking. After then filtered and press the marc and collect the filtrate in beaker. Methanolic extract (ME) and Ethenolic
extract (EE) of leaves were concentrated for further study of anthelmintic activity.

COLLECTION OF WORMS:
Healthy adult Indian earthworms *Pheretima posthuma* due to its anatomical and physiological resemblance with the intestinal roundworm parasites of human beings were used in the present study. All the earthworms were of approximately equal size to 4-8 cm length were obtained from the damp, cool, and covered area of the gardens of the local area. The worms were washed and transferred into a glass bottle with some quantity of water and authenticated.

ANTHELMINTIC ACTIVITY:
Anthelmintic activity was performed according to the method[10]. The adult Indian earth worm *Pheretima posthuma* as it has anatomical and physiological resemblance with the intestinal round worm parasites of human beings. Earthworm was placed in petridish containing three different concentrations each of ethanolic extract of *ficus elastic* (EEFE) and methanolic extract of *ficus elastic* (MEFE). Each petridish was placed with 4 worms and observed for paralysis and death time of individual worms. The time for paralysis was noted when no movement of any sort could be observed except when the worm was shaken by force, the time death of worm was recorded after ascertaining that worm neither moved when shaken nor when given external stimuli. In the same manner normal as control and Metronidazole was included as a reference compound. The test results were compared with standard Metronidazole (10mg/ml) treated sample.

RESULTS AND DISCUSSION:
According to table the leaves extract of *F. elastica* Linn.were used to evaluate anthelmintic activity, shows variable death time and paralysis time at different concentrations. It is close to the standard drug metronidazole (10mg/ml) activity. The activities of the crude extract increase with increasing the amount or concentration of leaves of *F. elastica* has shown paralysis and death time given in table. The Ethanolic extract of leaves having less time in paralysis and death time of earthworms compared to methanolic extract of leaves. So that, the Ethanolic extract of *F. elastica* shows significant anthelmintic activity greater than methanolic extract at maximum concentration. The results of this study are given in table-1.

CONCLUSIONS:
Antihelmintic effects of the extracts can ease the economic burden on anthelmintic therapy against *Pheritima posthuma*. The leave extracts of *Ficus elastica* having significant anthelmintic activity at high dose. The results are show in (Table 1 and Graph no-1 and 2) anthelmintic activity of Ethanolic extract of *F. elastica* was closely related to the metronidazole as standard drug for anthelmintic activity.

Table 1: In-vitro anthelmintic activity of Ethanol and Methanolic extract of leaves of *Ficus elastica* Linn.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Treatment</th>
<th>Group</th>
<th>Concentration (mg/ml)</th>
<th>Paralysis time (min.)</th>
<th>Death time (min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Normal Control</td>
<td>Group 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Metronidazole</td>
<td>Group 2</td>
<td>10(mg/ml)</td>
<td>6.45</td>
<td>13.2</td>
</tr>
<tr>
<td>3</td>
<td>Ethanolic extract</td>
<td>Group 3</td>
<td>25</td>
<td>16.5</td>
<td>23.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4</td>
<td>50</td>
<td>9.6</td>
<td>18.5</td>
</tr>
<tr>
<td>4</td>
<td>Methanolic extract</td>
<td>Group 5</td>
<td>25</td>
<td>18.3</td>
<td>29.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 6</td>
<td>50</td>
<td>13.5</td>
<td>22.3</td>
</tr>
</tbody>
</table>

Figure 1: Anthelmintic activity of Ethanolic extract of *Ficus elastica*.

Figure 2: Anthelmintic activity of Methanolic extract of *Ficus elastica*.

Vol.1 Issue 5. May-2013
Graph No1: Presentation of anthelmintic activity of various groups.

ACKNOWLEDGEMENT:
I am very grateful and thankful to Dr. Alok Pal Jain, Principal, and DR. Santram Loghi, HOD of G.R.K.I.S.T. (Pharmacy), Jabalpur, M.P., India, for providing excellent research facilities and for their cooperation and encouragement in carrying out this project.

REFERENCES: